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Preface

The first part of this book (Chapters 1–4) is devoted to the atomic functions (AF)
and their applications, such as novel wavelet (WA) systems. The theory of atomic
functions goes back to 1971, when the function up (x) was first constructed and studies.
Subsequently, the AF theory was considered in detail in different works initiated by
the book by V. L. Rvachev and V.A. Rvachev «Non-classical Methods of Approximation
Theory in Boundary-Value Problems», Kiev: Naukova Dumka, 1979. In the last
years, several books concerning the AF theory have been published: V.F.Kravchenko
«Lectures on the Theory of Atomic Functions and Their Some Applications», Moscow,
Radiotekhnika, 2003; V. F. Kravchenko and M.A. Basarab «Boolean Algebra and
Approximation Methods in Boundary Value Problems of Electrodynamics», Moscow,
Fizmatlit, 2004; V. F. Kravchenko and V. L. Rvachev «Logic Algebra, Atomic Functions
and Wavelets in Physical Applications», Moscow, Fizmatlit, 2006; «Digital Signal and
Image Processing in Radio Physical Applications», Ed. by V. F. Kravchenko, Moscow,
Fizmatlit, 2007.

The first part of this book presents an introduction to the atomic functions, their
properties, possible applications in signal and image processing, and the design of novel
wavelets based on the AF. The synthesis of novel weighting functions (windows) based
on the AF and applications of the novel windows in the digital radar, electroencephalog-
raphy, SAR, etc., are discussed in next chapters of the first part. In chapter 4, the basic
principles of the wavelet analysis are considered in detail and different wavelets, such
as the Kotelnikov–Shannon and Meyer wavelets, as well as the wavelets based on the
atomic functions (WA), are discussed.

Chapters 5–9 are devoted to the multidimensional signal enhancement. Models of
image and noise (additive, speckle, and impulsive) are discussed in chapter 5. Also, the
objective and subjective criteria of evaluating the quality of filtering are presented there.
Chapter 6 introduces different types of statistical estimators: the maximum likelihood
and the M, R, and L estimators along with their properties. The theory of novel RM
estimators is discussed there too. Chapter 7 gives a review of the linear and nonlinear
filtering techniques. It offers explanation of the trimmed mean filters, the KNN, Lλ,
LMS-L filters, the weighted median and order statistics filters, the vector median filter,
the family of data-dependent filters, and different variants of the proposed RM filtering
technique. Some commonly used models (RGB, YIQ, HIS, HSV, L*u*v* and L*a*b*) of
multichannel (color) images are exposed there too. Finally, the applications of wavelet
functions in multidimensional signal processing are discussed in connection with the
theory presented in chapter 4. A novel approach of the vectorial order statistics to
multichannel and video processing is presented in chapter 8. The vector median ordering
and filtering are explained, and different classical and novel filtering techniques, such
as the adaptive multichannel non-filtering, vector directional filter with double window,
etc., are discussed. Also, the fuzzy logics definitions and properties, as well as the fuzzy
generalization of classical filters are presented. Novel filtering techniques, such as 3D
ultrasound, 3D vector, and fuzzy 3D vectorial filters, are studied and their properties
are discussed.

Finally, chapter 9 exposes different implementations of multidimensional signal
processing by the proposed algorithms on the DSP and FPGA platforms permitting
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real-time filtering. Some important problems are resolved and presented there: ap-
plications of the AF and wavelets based on the AF (WA) for compression-windowing
in radar systems, compression algorithms for medical applications, and neural-network
based classification procedures in the mammography analysis.

The adaptive filters have been a subject of active research during last several decades
due to their widespread use for solving different practical problems in communications,
medicine, acoustics, security, etc. The transversal filter is the most widely used
adaptive filter due to its unconditional stability. In order to deal with long impulse
responses of such a filter, infinite impulse response (IIR) adaptive filter structures
have been developed. In the third part of the book (chapters 10–14), a review of
transversal, frequency domain, and infinite impulse response adaptive filter structures
along with some successful applications, such as adaptive equalizers and echo canceling,
is given. The analysis of the transversal FIR filter structure along with some of most
widely used adaptive algorithms is presented in the chapter 10. In applications that
require impulse responses with several hundreds or even thousands of FIR taps, their
computational complexity becomes too high. In chapter 11, the fast Fourier transform
is used for performing the convolution and correlation required in applications reducing
the computational complexity.

The adaptive IIR can provide the computational complexity with a much smaller
number of filter coefficients. There are a number of problems associated with adaptive
IIR filters: slow convergence, possible filter instability, and error function with multiple
local minima. These problems are discussed in chapter 12.

A fundamental problem in communication systems consisting of unidirectional and
bidirectional communications links is the echo signal, which can be reduced using echo
canceling. This problem is described in chapter 13.

The intersymbol interference reduction in most digital communication systems can
be achieved by means of the efficient equalizer algorithms proposed and discussed in the
final, fourteenth chapter of this book.

The first part of the book (chapters 1–4) was written by V. F. Kravchenko; the
second part (chapters 5–9), by V. I. Ponomaryov; and the third part (chapters 10–14)
by H.M. Perez-Meana.

Moscow–Mexico, V. F. Kravchenko,
May 2009. H.M. Perez-Meana,

and V. I. Ponomaryov



Chapter 1

THE THEORY OF ATOMIC FUNCTIONS

1.1. Introduction to the Theory of Atomic Functions

By definition, atomic functions (AF) are compactly supported infinitely differentiable
solutions of differential equations with a shifted argument [1–5], i.e.,

Lf(x) = λ
M∑

k=1

c(k)f (a x− b(k)), |a| > 1, (1.1)

where L is a linear differential operator with constant coefficients. If a=1 and b(k)=0
(k = 1, M), equation (1.1) becomes an ordinary differential equation.

The simplest and most important AFs are generated by infinite-to-one convolutions
of rectangular impulses. To investigate such convolutions, we use the Fourier transform
of this impulse:

ϕ(x) =
1

2π

∞∫
−∞

ejux
sin(u/2)

u/2
du. (1.2)

The N -to-one convolution of (N + 1) identical rectangle impulses ϕ(x) gives us the
compactly supported spline θN (x) which, analogously to (1.2), can be written as

θN (x) =
1

2π

∞∫
−∞

ejux
(

sin(u/2)

u/2

)N+1

du. (1.3)

Let us consider the convolution of impulses of variable length, ϕn(x):

ϕn(x) =

{
2n−1, |x| 6 2n−1

0, |x| > 2n−1

Such convolution can be repeated infinitely, and the sum of the lengths of the convolved

impulses forms a geometric progression, so that
∞∑
n=1

2−n+1 = 2. Thus, the result of this

operation is a new compactly supported function defined on the interval [−1, 1]. It can
easily be shown that it satisfies equation (1.1) in the simplest form: f ′(x) = 2 · f(2x+
+ 1) − 2 · f(2x − 1), where f(0) = 1, supp f(x) = [−1, 1]. Its solution was denoted by
up (x) («splash») (see [6–9]).

Analogously to (1.2) and (1.3), the function up (x) has the following representation
in terms of the Fourier transform:

up (x) =
1

2π

∞∫
−∞

ejux
∞∏

k=1

sin
(
u · 2−k)

u · 2−k
du. (1.4)



10 Ch. 1. The Theory of Atomic Functions

The most useful property of the AFs is the possibility to represent any polynomial
by means of their translations. Also, the Fourier transforms for the AFs are known
explicitly. Besides, simple expressions for moments and derivatives of the AFs take
place [8].

1.2. The «Mother» Atomic Function up (x) and Its Main Properties

From the aforementioned definitions one can obtain immediately the main properties
of the function up (x).

1. Function up (x) is even, i.e.,

up (x) = up (−x), up (x) = 1− up (1− x). (1.5)

2. Its maximum value is up (0) = 1, and
1∫
−1

up (x)dx = 1.

Plots of the function up (x) and its Fourier spectrum are shown on Figure 1.1. The
spectrum of up (x) is an even real-valued function of exponential type, rapidly damping
and having zeros at points divisible by 2π. The first sidelobe level is equal to −23.5 dB.

3. The first derivative of the function up (x) has the simple expression up ′(x) =
= 2 · up (2x+ 1) − 2 · up (2x− 1).

Analogously, we obtain expressions for higher-order derivatives. The nth order
derivative is evaluated by the formula

4. up (n)(x) = 2C
2
n+1

2n∑
k=1

δk up (2nx+ 2n + 1− 2k), where δk are determined by the

recurrent relations δ1 = 1, δ2k = −δk, δ2k−1 = δk.
The function up (x) is a solution to the so-called «partition of unity» problem since

its translations form the constant function equal to unity:
5.

+∞∑

k=−∞

up (x− k) ≡ 1. (1.6)

Translations with smaller steps yield polynomials of any degree, i.e.,
6.

+∞∑

k=−∞

C(k)up
(
x− k · 2−N

)
≡ xN .

It is essential that, since up (x) is compactly supported, the previous sum contains
only a finite number of nonzero terms for each value of x equal to 2N+1 = C(k). Let
ξ1, ξ2, ξ3, . . . , ξn, . . . be a sequence of independent random variables uniformly distributed

on the interval [–1, 1]. Then the value ξ =
∞∑
k=1

ξk2
−k has the probability density up (x).

7. For symmetric moments of up (x) we have an =
1∫
−1

xn up (x)dx and, due to

evenness of the function, a0 = 1 and a2n+1 = 0. Moments of even order are evaluated

recurrently as a2n =
(2n)!

22n − 1

n∑
k=1

a2n−2k

(2n− 2k)!(2k + 1)!
.
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Fig. 1.1. Atomic function up (x): (a) function; (b) spectrum.

The first four of them are as follows: a2 =
1

9
, a4 =

19

3352
, a6 =

583

355 · 72
, and a8 =

=
132809

37537 · 17
.

8. For nonsymmetric moments of up (x) we have bn =
1∫
0

xn up (x)dx, b2n = a2n,

and b2n+1 =
1

(n+ 1)2n+1

∑
a2n−2k+2C

2k
2n+2k. For instance, b1 =

5

2232
, b3 =

143

233352
, b5 =

=
1153

263672
, and b7 =

1616353

2437547 · 17
.

9. The function up (x) possesses the following interesting and important property:

its moments are related to its values at binary rational points as

up (1− 2−n) =
bn−1

(n− 1)! 2n(n−1)/2
. (1.7)
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This allows one to evaluate the function at these points by the formulas for the

moments: up (−1/2) =
1

2
, up (−3/4) =

5

2332
, up (−7/8) =

1

2532
, up (−15/16) =

143

2103452
,

and up (−31/32) =
19

2143452
.

10. Property (8) gives the possibility to write the following specific series for

effective evaluation of up (x) at an arbitrary point of the interval [0, 1]:

up (x− 1) =
∞∑

n=1

(−1)Sn+1an

n∑

k=0

Ank (x− 0, a1 . . . an)
k
, (1.8)

where Sn =
n∑
i=1

ai, ai are the digits of the binary representation of the argument, and

x =
∞∑
i=1

ai2−i, so that (x− 0, a1 . . . an) =
∞∑
i=1

ai+n2−i. The coefficients of series (1.9) are

defined by the values at binary rational points: Ank =
2C2

k+1 · up (1− 2−(n−k))

k!
.

Series (1.8) is rapidly convergent. To attain the accuracy of 2−64, it is sufficient to

take n = 1, . . . , 9. If n = 5, the error will not exceed 2.06 · 10−9.
The function up (x) is nonanalytic everywhere on its support: either the correspond-

ing Taylor series has a zero radius of convergence or it converges to another function.
That is why one cannot use ordinary power series to represent up (x). However, after
extension with period 2π onto the whole real axis, the function up (x) has a rapidly
convergent Fourier series expansion in even harmonics:

up (x) = 0.5 +
∞∑

k=1

Up (πk) cos [π(2k − 1)x].

11. To approximate functions of many (L) variables, the multidimensional function

up (L,x) =
L∏
i=1

up (xi) is used.

1.3. Functions fup N(x) and Their Properties

The convolution of functions θn(x) and up (x) yields another important function
defined on the interval [−(N + 2)/2, (N + 2)/2] and denoted by fupN (x):

fupN (x) = θN (x) ∗ up (2x) = θN−1(x) ∗ up (x). (1.9)

Here, fup 0(x) ≡ up (x).
The Fourier transform of fupN (x) can be written as

fupN (x) =
1

2π

∞∫
−∞

ejux
(

sin(u/2)

u/2

)N ∞∏

k=1

sin
(
u · 2−k)

u · 2−k
du. (1.10)
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All three considered functions, up (x), θN (x), and fupN (x), have common representa-

tion based on the identity sin(x)/x ≡
∞∏
k=1

cos
(
2−kx

)
:

ϕa,b(x) =
1

2π

+∞∫
−∞

ejux
∞∏

k=1

(
cos
(
2−kx

))ak+b
du. (1.11)

Then, if a = 0 and b = N + 1, we have θN (x). If a = 1 and b = −1, we have up (x)
and, if of a = 1 and b = N , (1.11) yields fupN (x).

As mentioned above, since the perfect splines are piecewise polynomials, they can
be used in the problems of polynomial interpolation and the corresponding relations
have the convolution form. However, one should take into account that the compactly
supported spline θN (x) has at most N -1 continuous derivatives, whereas most practical
problems require infinitely differentiable compactly supported functions. It is in such
cases that the infinitely differentiable atomic functions fupN (x) are most useful.

Functions fupN (x) are the so-called fractional components of up (x) [6, 14–16,
19, 20]. This means that the function up (x) can be expanded into a finite interval
convolution of functions fupN (x) for any N . This property makes formulas for the
atomic functions to be flexible in numerical realization. In interpolation problems, the
functions fupN (x) are of special interest, whereas the function up (x) is considered as
a basic one providing infinite smoothness in interpolation.

Let us consider the main properties of functions fupN (x), necessary for their
application.

1. The function fupN (x) is positive and even for all N , supp fupN (x) =

= [−(N + 2)/2, (N + 2)/2], and
1∫
−1

fupN (x)dx = 1.

2. The derivative of fupN (x) is expressed via the function fupN−1(x):

fup ′
N (x) = fupN−1

(
x+

1

2

)
− fupN−1

(
x− 1

2

)
.

3. The functions fupN (x) and fupN+1(x) are recurrently related by the expression

fupN (x) = 2−N
N+1∑

k=0

CkN+1 fupN+1 [2x− k + (N + 2)/2].

This property means that each function fupN (x) is decomposed to the finite interval
convolution of (N+2) compressed functions fupN+1(x).

4. A recurrent use of property 3) yields the relation between up (x) and fupN (x):

up (x) = 2−C
2
N

1∑

k1=0

2∑

k2=0

· · ·
N∑

kN=0

Ck11 C
k2
2 . . .CkN

N ×

× fupN

[
2N (x+ 1) −

N∑

i=1

(
ki2

i −N
)
]
, (1.11a)

where the number of expansion terms is equal to 2N+1 − (N + 1). For example, up (x) =

= fup 1

(
2x− 1

2

)
+ fup 1

(
2x+

1

2

)
.
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5. From property 4) one can obtain the inverse expression for fupN (x) via up (x).
To do this, represent (1.11a) in the form

2C
2
Nup

(
x− (N + 2)/2

2N
+ 1
)

=

=
1

2π

+∞∫
−∞

N−1∏

k=0

(
1 + eju 2k

)N−k
(

sin(u/2)

u/2

)N ∞∏

i=1

sin
(
u 2−i)

u 2−i ejudu,

from which, by a subsequent subtraction of functions up (x) shifted to the left, one can
obtain the necessary relations for fupN (x). For example, on the interval [0, 3/2] we
have

fup 1(x) = up
(
x+ 1/2

4

)
− up

(
x+ 3/2

4

)
. (1.12)

Analogously, for the other cases we obtain

N = 2 : 2 · up
(
x+ 2

4

)
= fup 2(x) + 2 · fup 2(x+ 1),

[0, 2] : fup 2(x) = 2
[
up
(
x+ 2

4

)
− 2 · up

(
x+ 3

4

)]
. (1.12a)

N = 3 : 8 · up
(
x+ 11/2

8

)
=

= fup 3(x) + 3 · fup 3(x+ 1) + 5 · fup 3(x+ 2),

[0, 5/2] : fup 3(x) = 8
[
up
(
x+ 11/2

8

)
−

−3 · up
(
x+ 13/2

8

)
+ 4 · up

(
x+ 15/2

8

)]
. (1.12b)

N = 4 : 64 · up
(
x+ 13

16

)
=

= fup 4(x) + 4 · fup 4(x+ 1) + 9 · fup 4(x+ 2),

[0, 3] : fup 4(x) = 64
[
up
(
x+ 13

16

)
−

−4 up
(
x+ 14

16

)
+ 7 up

(
x+ 15

16

)]
. (1.12c)

These relations allow the use of the series (Property 4) for computing fupN (x). For
instance, one can find fup 1(−1) = 5/72, fup 1(−1/2) = 1/2, and fup 1(0) = 31/36.

6. From property 5) it follows that, to within a constant factor, fupN (x) coincides
on the interval [N/2, N/2+1] with a part of the shifted function up (x) fupN (x) =

= 2C
2
N up

(
x− (N + 2)/2

2N
+ 1
)
.

7. Analogously, on each jth interval [j-(N+2)/2; j −N/2], for j = 1, . . .,N + 1 the
following relation takes place:

fupN (x) = 2C
2
N (−1)jCjN+1 up

(
x− j + (N + 2)/2

2N
− 1
)

+

+
N∑

k=0

fup
(k)
N (j − (N + 2)/2)

k!
· (x− j + (N + 2)/2)k ,
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where

fup
(k)
N (j − (N + 2)/2) =

2−k−1

(n− k)!
·
j−1∑

m=0

(−1)mCmN+1

N−k∑

s=0

[2(j −m) − 1]s Csn−kan−k−s.

Here, at the points xj = −N/2 + j, equally spaced with the unit step from the left end
of the support of function fupN (x), we have

fupN (xj) = 2C
2
N (−1)jCjN+1 up

(
1− 2−N

)
+

N∑

k=0

fup
(k)
N (j − (N + 2)/2)

k!
. (1.13)

In particular, fupN (−N/2) = 2C
2
N up

(
1− 2−N

)
.

8. Another way to evaluate functions fupN (x) is to use rapidly convergent Fourier
series after periodic expansion of the function onto the whole real axis with a period
equal to the length of its support. For example, for the function fupN−1(x), we have

fupN−1(x) = N−1




1 + 2

N/4−1∑

k=1




sin
πk

N
πk

N



N

∞∏

i=1

sin
πk2−i

N
πk2−i

N

cos
2πkx

N




. (1.14)

The number of terms in the sum must be restricted by the quarter order of the function.
For a function of order N , the infinite product in (1.14) can be omitted, i.e., it can be
replaced by a compactly supported spline without loss of accuracy.

Plots of the functions fupN (x), the first and second derivatives of the function
fup 2(x), and Fourier transforms of the functions fupN (x) are shown in Figures 1.2–1.3.

Fig. 1.2. Functions fupN (x) for N = 2, 3, 6, 8.
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Fig. 1.3. Fourier transforms of fupN (x) for N = 2, 3, 6, 8 in a logarithmic scale.

1.4. Atomic Functions ha(x) and Their Properties

Atomic functions ha(x) (a > 1) are the compactly supported solutions of the
functional-differential equation

y′(x) =
a2

2
(y(ax+ 1) − y(ax− 1)) . (1.15)

The function ha(x) is widely used for the synthesis of weighting windows in digital
signal processing [13, 14]. The function ha(x) with a = 2 is designated by up (x). Let
us itemize basic properties of the function ha(x) [3, 13]:

1) ha(x) = 0 at |x| > (a− 1)−1.

2) ha(x) = a/2 at |x| 6
a− 2

a(a− 1)
, a >2.

3) The Fourier transform of ha(x) is given by the formula

Fa(p) =
∞∏

k=1

sinc (p/ak) (1.16)

and vanishes at the points aπn, n 6=0. Using formula (1.16), we can write the Fourier
expansion of ha(x) on the interval |x| 6 (a–1)−1:

ha(x) = (a− 1)

(
1

2
+

∞∑

k=1

Fa[(a− 1)πk] cos[(a− 1)πkx]

)
.
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4) Expression (1.16) is the characteristic function of the random variable ξ(a) =

=
∑∞

j=1 a
−jξj , where {ξj} is the sequence of independent random variables uniformly

distributed over the segment [–1, 1]. The function ha(x) is an infinite-fold convolution
of the characteristic functions of intervals [–a–k, a–k] and represents the probability
density of the random variable ξ(a); therefore,

∫∞

−∞ ha(x)dx = 1. The lengths of the
characteristic intervals form a geometric progression with the base a− 1 < 1.

5) Moments of function ha(x) and derivatives of expression (1.16) at zero points are

related by the formula
∫∞

−∞ x2kha(x)dx = (−1)kF
(2k)
a (0).

Furthermore, F
(2k)
a (0) = (2k)!c2k(a), where the quantities c2k(a) are calculated from

the simple recurrence formulas: c0(a) = 1, c2k(a) =
1

a2k − 1

k−1∑
j=0

(−1)k−jc2j(a)

(2k − 2j + 1)!
, k =

= 1, 2, . . .
6) For a > 2, the function ha(x) is a polynomial on the full measure set and is a

nonanalytic function on the remaining nowhere dense null set. (The latter means that
the Taylor series either contains a finite number of terms and does not converge to ha(x)
or has a zero radius of convergence). The functions ha(x) with a > 2 can be treated as
splines of class C∞.

7) Using (1.15), derivatives of the functions ha(x) can be recurrently expressed by
the formula involving shifted and dilated functions ha(x):

h(n)
a (x) = 2−na

n(n+3)
2

2n∑

k=1

δkha

(
anx+

n∑

j=1

aj−1(−1)pj(k−1)

)
,

where δ1 = 1, δ2k = −δk, δ2k−1 = δk, k = 1, 2, . . . , and pj(k) is the number standing in
the jth position of the binary expansion of the number k, i.e., pj(k) = [k · 2j ] mod 2.

1.5. Interpolation of Signals by ha(x)

It has been proposed to use the Fourier transforms of the functions ha(x) for the
interpolation of signals [8]. In order to interpolate a function f(x) at the points 2πn,
where n is an integer, the following series was proposed [6, 16]:

f̃(x) =
∞∑

k=−∞

f(2πk)
∞∏

n=1

sinc [(x− 2πk)/2n]. (1.17)

However, the convergence conditions for this series were not investigated. Below, a
more general result is proved.

Theorem 1.The series

f̃(x) =
∞∑

k=−∞

f(k∆)Fa
[
aπ

∆
(x− k∆)

]
, (1.18)

where a > 1 and ∆ > 0, converges if the function f(x) is absolutely integrable over

the whole real axis, i.e., if f(x) ∈ L1[−∞,∞].
Proof. Evidently,

Fa
[
aπ

∆
(x− k∆)

]
=

∞∫
−∞

ha(z) exp
[
iz
aπ

∆
(x− k∆)

]
dz.
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Then, f̃(x) =
∞∑

k=−∞

f(k∆)
∞∫
−∞

exp(iaπxz/∆)ha(z) exp(−iaπkz)dz.
Let us expand the function exp(iaπxz/∆) into the Taylor series in powers of the

variable z:

exp(iaπxz/∆) =
∞∑

m=0

(iaπx/∆)m

m!
zm.

Then, the expression for f̃(x) takes the form

f̃(x) =
∞∑

k=−∞

f(k∆)
∞∑

m=0

(iaπx/∆)m

m!

∞∫
−∞

zmha(z) exp(−iaπkz)dz.

Denote bk,m =
∫∞

−∞ zmha(z) exp(−iaπkz)dz. The following estimate is valid:

|bk,m| 6 |ξ|mha(0)
1/(a−1)∫

−1/(a−1)

| exp(−iaπkz)|dz =
2ha(0)

a− 1
|ξ|m = C|ξ|m,

where ξ ∈ [−(a− 1)−1, (a− 1)−1]. Taking this fact into account, we obtain

|f̃(x)| 6

∞∑

k=−∞

|f(k∆)|
∞∑

m=0

|iaπx|m
m!

|bk,m| = C
∞∑

m=0

|aπx|m
m!

|ξ|m
∞∑

k=−∞

|f(k∆)| . (1.19)

Since the Taylor series of the function ex is absolutely convergent over the whole real
axis, in order that |f̃(x)| be finite, the series

∑∞
k=−∞ |f(k∆)| must converge. This

convergence will take place if f(x) ∈ L1[−∞,∞]. So, the theorem is proved.
One can see that, when a=2 and ∆=2π, series (1.18) coincides with the Zelkin–

Kravchenko series (1.17).
The approximation with the functions of the general form (1.16) is provided by the

following theorem.
Theorem 2. Let the function f(x) have a finite spectrum ( supp f̂(p) = [−Ω,Ω]).Then

the following exact expansion is valid:

f(x) =
∞∑

k=−∞

f(k∆)Fa
[
aπ

∆
(x− k∆)

]
, (1.20)

where Fa(x) is defined by expression (1.16) and conditions

a > 2, ∆ 6
π

Ω
· a− 2

a− 1
, (1.20a)

or ∆ <
π

Ω
, a >

2− ∆Ω/π

1− ∆Ω/π
(1.20b)

are fulfilled.

Proof. Define the auxiliary function

ϕ(x) ≡ f(x)
∞∏

n=2

sinc
(
πa

∆an (z − x)
)
, z ∈ R.

This function also has a finite spectrum and supp ϕ̂(p) = [−α;α], where α = Ω +

+
π

∆

∞∑
n=1

1

an = π

(
Ω

π
+

1

∆(a− 1)

)
.
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In order that ϕ(x) be expandable into the Kotelnikov series, the condition α 6 π/∆
must be fulfilled. Hence, inequalities (1.20a) and (1.20b) must also be fulfilled. In this
case, we have

ϕ(x) =
∞∑

k=−∞

ϕ(k∆) sinc
[
π

∆
(x− k∆)

]
=

=
∞∑

k=−∞

{
f(k∆)

∞∏

n=2

sinc
(
πa

∆an (z − k∆)
)}

sinc
[
π

∆
(x− k∆)

]
.

Let x = z. Then, ϕ(z) = f(z) =
∞∑

k=−∞

f(k∆)
∞∏
n=1

sinc
(
πa

∆an (z − k∆)
)
.

The latter expression is the required expansion (1.20) to within the denotation of the
independent variable. The theorem is proved.

Corollary. If f(x) ≡ 1, then Ω = 0 ( supp f̂(p) = {0}), i.e., f̂(p) = δ(p), and, for all
∆ > 0 and a > 2, the following partition of unity takes place:

∞∑

k=−∞

∞∏

n=1

sinc
[

π

∆an−1
(x− k∆)

]
= 1. (1.21)

If f(x) does not satisfy conditions of Theorem 2, series (1.20) can be treated as an
approximate representation of this function. In this case, the approximation will be exact
at the points k∆. The first problem in practical calculations is that we have to use a
finite number of terms in the product on right of formula (1.16):

Fa(p) =
M∏

k=1

sinc (p/ak). (1.22)

After reasoning similar to that used in the proof of Theorem 2, one may conclude that,
in this case, we also obtain an exact expansion (1.20) if the conditions of the theorem

are replaced with the weaker constraints: a(1 + a−M ) > 2, ∆ 6
π

Ω
· a(1 + a−M ) − 2

a− 1
.

Table 1.1 summarizes the minimum possible values of parameter a for various
numbers of terms M in the product obtained from the solution of the transcendental
equation a(1 + a−M ) − 2 = 0.

Table 1.1. The minimum possible values of parameter a for various numbers of terms M in the
product in (1.16).

M a M a M a M a

1 1 4 1.8405 7 1.9843 10 1.9980

2 1.0241 5 1.9277 8 1.9922 11 2.0000

3 1.6189 6 1.9660 9 1.9961 12 2.0000

Evidently, for M = 1, we obtain, as a special case, the Kotelnikov series; and, in the
limit M → ∞, the series (1.20) is correct.

The second problem is that we have to use a finite number of terms in series (1.20):

f̃N (x) =
N∑

k=−N

f(k∆)Fa
[
aπ

∆
(x− k∆)

]
.
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The effect of this truncation is not so important as the truncation of the Kotelnikov
series, because the sidelobe levels of functions (1.16) and (1.22) are far lower than that
of sinc (p).

1.6. An Example of Evaluating ha(x)

1. The computational formula for evaluating ha(x) is written in the form

ha(x) =
1

2π

∞∫
−∞

ejux
∞∏

k=1

sin
(
u · a−k)

a · 2−k
du. (1.23)

Let us restrict ourselves to a finite value of kin calculations:

h̃a(x) =
1

2π

∞∫
−∞

ejux
M∏

k=1

sin
(
u · a−k)

a · 2−k
du. (1.24)

From property 3 it follows that, in practice (for small values of х), it is sufficient to take
a small number of terms in the product in formula (1.16), M = 4÷ 6.

Using the aforementioned argumentation, we can construct plots and find maximal
values of the absolute and relative error for M = 4 (as a standard function, we take
ha(x) evaluated at M = 8 and M = 12, a = 3).

δmax = max
x∈[−1/(a−1),1/(a−1)]

(|h3(x) − h̃3(x)|),

δ̃max = max
x∈[−1,1]

(
|h3(x) − h̃3(x)|

h̃3(x)

)
· 100%.

(1.25)

The relative error is estimated as δmax 6 1.7 · 10−4 at M = 4 (h̃a(x) is evaluated at M =
= 8), which does not exceed 0.024% at the endpoints of the interval [−1/(a− 1), 1/(a−
− 1)]; for M = 4 (h̃a(x) is evaluated at M = 12), δmax 6 1.5 · 10−3 and δ̃max 6 1.5 · 10−3

(0.15 %).

1.7. Atomic Functions Ξn(x)

Consider the atomic function Ξn(x). By definition, Ξn(x) is a compactly supported
solution of the equation

yn(x) = a
n∑

k=0

Ckn(−1)ky[(n+ 1)x+ n− 2k] (1.26)

on the interval [–1, 1], where a = (n+ 1)n+1 · 2−n and
1∫
−1

Ξn(x)dx = 1.

The functions Ξn(x) are generalizations of the function up (x) (Fig. 1.4). As follows
from Fig. 1.4 a, the width of Ξn(x) decreases as n becomes greater, while its maximum
value grows. With the increase of n, the sidelobe level of the Fourier transform Kn(t)
decreases and the main lobe width grows (Fig. 1.4 b).



1.8. Atomic Functions gk,h(x) 21

Using transforms analogous to those made in [7, 8, 17], we obtain the following
integral representation of Ξn(x):

Ξn(x) =
1

2π

∞∫
−∞

exp{ixt}
∞∏

k=1

(
sin t(n+ 1)−k

t(n+ 1)−k

)n
dt. (1.27)

If n=1, then Ξ1(x) = up (x). The results obtained for the function up (x) can be derived
for the function Ξn(x) (n >1) in the same way. The function Ξn(x) asymptotically tends
to a normalized compactly supported nth order spline θn(x) in the norm of the space

L1:

∥∥∥∥Ξn(x) −
θn(x)

||θn(x)||L1

∥∥∥∥
Ck

→ 0 as n→ ∞.

This function is infinitely fractured and its fracture components belong to the class

of atomic functions.

Fig. 1.4. Atomic function Ξn(x): (a) plots of functions Ξn(x); (b) its Fourier transform Kn(t) at
n = 4 (solid line), n = 3 (dashed line), n = 2 (dot-and-dashed line).

1.8. Atomic Functions gk,h(x)

Consider the equation [11–13]

g′′k,h(x) + k2gk,h(x) = agk,h(3x+ 2h) − bgk,h(3x) + agk,h(3x− 2h) (1.28)

under the conditions that supp gk,h(x) = [−h,h],
h∫
−h

gk,h(x)dx = 1.
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The compactly supported solution of this equation is

gk,h(x) =
1

2π

∞∫
−∞

Fk,h(t) exp{−itx}dt, (1.29)

where

Fk,h(t) =
∞∏

j=1

k2

1− cos(2kh/3)

[
cos(2th3−j) − cos(2kh/3)

]

k2 − t291−j
,

a =
3

2

k2

1− cos(2kh/3)
, b = 2a cos(2kh/3).

Let analyze equation (1.28) at h = 1 (Fig. 1.5). It can be shown that functions gk(x)
are infinitely fractured and their fracture components have the form (1.29), where

Fk,m(t) =

∣∣∣∣
2k2

1− cos(2k/3)

∣∣∣∣
m sin

k + t

3m+1
sin

k − t

3m+1

(k + t)(k − t)
×

×
m∏

i=2

sin
(

k

3i
+

t

3m+1

)
sin
(

k

3i
− t

3m+1

)

(k + t31−i)(k − t31−i)
×

×
∞∏

j=m+1

2k2

1− cos(2k/3)

sin
(

k

3
+ t3−j

)
sin
(

k

3
− t3−j

)

(k + t31−j)(k − t31−j)
.

g′′k (x) + k2gk(x) = agk(3x+ 2) − bgk(3x) + agk(3x− 2) (1.30)

under the conditions supp gk(x) = [−1, 1],
1∫
−1

gk(x)dx = 1.

Applying the Fourier transform to both parts of (1.30) and designating Fk(t) =

=
∞∫
∞

gk(x) exp{itx}dx, we obtain the compactly supported solution gk(x) =
1

2π
, where

Fk(t) =
∞∏

j=1

k2

1− cos(2k/3)

[
cos(2t3−j) − cos(2k/3)

]

k2 − t291−j
, (1.31)

a =
3

2

k2

1− cos(2k/3)
, b = 2a cos(2k/3).

The function Fk(t) satisfies the functional equation

Fk(t) =
k2

1− cos(2k/3)

cos(2t/3) − cos(2k/3)

k2 − t2
Fk
(
t

3

)
.

Let us show that evaluation of the function gk(x) at the points −1 + 2m/3n

(m,n ∈ N), which form an everywhere dense set, can be reduced to calculating Fk(k).
Consider the differential equation

(D2 + k2)gk(x) = f(x), (1.32)
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Fig. 1.5. Atomic function gk(x): (a) functions gk(x); (b) its Fourier transform Fk(t) at n = 1
(solid line), n = 2 (thin line), n = 3 (dot-and-dashed line), and n = 4 (dashed line).

where D2 =
d2

dx2
, f(x) = agk(3x+ 2) − bgk(3x) + agk(3x− 2).

Its general solution is gk(x) =
x∫
−1

G(x, t)f(t)dt+ C1 cos kx+ C2 sin kx .

Here, G(x, t) =
1

k
sin(x − t)k is the Green function. To find the constants C1 and

C2, we write

g′k(x) =

x∫

−1

G′(x, t)f(t)dt+ G(x, t)|x=t f(t) − kC1 sin kx+ kC2 cos kx.

Taking into account that the function is compactly supported and

gk(−1) = gk(1) = g′k(−1) = g′k(1) = 0, (1.33)

we obtain

{
C1 cos k − C2 sin k = 0,
kC1 sin k + kC2 cos k = 0.
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Since G(x,x) = 0, we have C1 = C2 = 0. Thus, the solution of equation (1.32) with

boundary conditions (1.33) is

gk(x) =

x∫

−1

G(x, t)f(t)dt. (1.34)

Substituting the functionf(x) into equation (1.34), we obtain

gk(x) =

x∫

−1

G(x, t) {agk(3t+ 2) − bgk(3t) + agk(3t− 2)} dt. (1.35)

Making corresponding substitutions in (1.35) and taking into account that G(x, t) =

=
1

2ki
{exp[ik(x− t)] − exp[−ik(x− t)]}, we get

gk(x) =
1

2ki




a

3


exp

{
ik
(
x+

2

3

)} 3x+2∫

−1

gk(u) exp
{
− iku

3

}
du−

− exp
{
−ik

(
x+

2

3

)} 3x+2∫

−1

gk(u) exp
{
iku

3

}
du


−

− b

3


exp{ikx}

3x∫

−3

gk(u) exp
{
− iku

3

}
du−

− exp{−ikx}
3x∫

−3

gk(u) exp
{
iku

3

}
du


+

+
a

3


exp

{
ik
(
x− 2

3

)} 3x−2∫

−5

gk(u) exp
{
− iku

3

}
du−

− exp
{
−ik

(
x− 2

3

)} 3x−2∫

−5

gk(u) exp
{
iku

3

}
du





 . (1.36)

Let us evaluate gk
(
−1

3

)
. From (1.36) it follows that

gk
(
−1

3

)
=

a

6ki

{
exp

{
ik

3

}
F
(
−k

3

)
− exp

{
− ik

3

}
F
(
k

3

)}
,

where Fk(α) is the Fourier transform of gk(x), defined as Fk(α) =
∞∫
−∞

gk(x) exp{iαx}dx.
Since Fk(α) and gk(x) are even functions,

Fk
(
−k

3

)
= Fk

(
k

3

)
and gk

(
±1

3

)
=

a

3k
sin

k

3
Fk
(
k

3

)
. (1.37)
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For the first derivative of gk(x), we obtain

g′k

(
−1

3

)
=
a

3
sin

k

3
Fk
(
k

3

)
. (1.38)

Since g′k

(
−1

3

)
= −g′k

(
1

3

)
, we have

g′k

(
1

3

)
=
a

3
cos

k

3
Fk
(
k

3

)
. (1.39)

Substituting the value a =
3

2

k2

1− cos 2k/3
into (1.37)–(1.39), we get

gk
(
±1

3

)
=

k

4 sin
k

3

Fk
(
k

3

)
, g′k

(
±1

3

)
= ±

k2 cos
k

3

4 sin2 k

3

Fk
(
k

3

)
. (1.40)

To evaluate the function gk(x) at the points −7/9, −5/9, apply the differential operator
D2 + 9k2 to both parts of equality (1.40). Then we have

(D2 + 9k2)(D2 + 9k2)gk(x) = f1(x), (1.41)

where

f1(x) = 9{a2gk(9x+ 8) − abgk(9x+ 6) + a2gk(9x+ 4)−
− abgk(9x+ 2) + b2gk(9) − abgk(9x− 2) + a2gk(9x− 4)−

− abgk(9x− 6) + a2gk(9x− 8)}.
The general solution of equation (1.41) can be written as

gk(x) =
1

8k2





x∫

−1

G1(x, t)f1(t)dt−
x∫

−1

G2(x, t)f1(t)dt



+ C1 exp{ikx}+

+ C2 exp{−ikx} + C3 exp{3ikx} − C4 exp{−3ikx}, (1.42)

where G1(x, t) =
1

k
sin(x− t)k, G2(x, t) =

1

3k
sin 3(x− t)k.

Taking into account that the function gk(x) and all its derivatives vanish at the

points ±1 and G1(x, t)|x=t = G′′
1 (x, t)|x=t = 0, G2(x, t)|x=t = G′′

2 (x, t)|x=t = 0, we get

C1 = C2 = C3 = C4 = 0 and

gk(x) =
1

8k2





x∫

−1

G1(x, t)f1(t)dt−
x∫

−1

G2(x, t)f1(t)dt



 .

Let us evaluate gk (−7/9) and gk (−5/9). We have

gk
(
−7

9

)
=

a2

8ik3

{
sin

k

9
Fk
(
k

9

)
− 1

3
sin

k

3
Fk
(
k

3

)}
. (1.43)

gk
(
−5

9

)
=

1

8k3

{
a2 sin

k

3
−ab sin

k

9

}
Fk
(
k

9

)
− 1

24k3

{
a2 sin k−ab sin

k

3

}
Fk
(
k

3

)
. (1.44)
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Since a =
3

2

k2

1− cos
2

3
k
, b = 2a cos

2

3
k, from (1.29) it follows that

Fk
(
k

3

)
=

9

4

sin2 2k

9
cos

2k

9

sin2 k

3

.

Here,

gk
(
−7

9

)
=

9k sin
k

9

128 sin5 k

3

{
sin

k

3
− 3 sin

k

9
cos2

k

9
cos

2k

9

}
Fk
(
k

9

)
, (1.45)

gk
(
−5

9

)
=

9k

128 sin6 k

3

{(
1− cos

2k

3
sin

k

9

)
sin2 k

3
−

− 3

4

(
sin k − 2 cos

2k

3
sin

k

3

)
sin2 2k

9
cos

2k

9

}
Fk
(
k

9

)
, (1.46)

gk
(
−1

3

)
=

9k

16

sin2 2k

9
cos

2k

9

sin3 k

3

Fk
(
k

9

)
.

The values of the derivative of gk(x) at these points are as follows:

g′k

(
−7

9

)
=

9k2

128 sin4 k

3



cos

k

9
−

9 sin2 2k

9
cos

2k

9
cos

k

3

4 sin2 k

3



Fk

(
k

9

)
,

g′k

(
−5

9

)
=

9k2

128 sin4 k

3



cos

k

9
− 2 cos

2k

3
cos

k

9
+

9 sin2 2k

9
cos

2k

9
cos

k

3

4 sin2 k

3



Fk

(
k

9

)
,

g′k

(
−1

3

)
=

9k2 cos
k

3
sin2 2k

9
cos

2k

9

16 sin4 k

3

Fk
(
k

6

)
.

From (1.29) at t = k it follows that

Fk(k) =
n−1∏

j=0




k2

1− cos 2k · 3−1

{
cos
(
2k · 3−j−1

)
− cos 2k · 3−1

}

k2 − k2 · 91−j


Fk

(
k

3n

)
. (1.47)

Let estimate Fk
(
k

3n

)
for large n. Expanding the function Fk

(
k

3n

)
into the Taylor series

and restricting ourselves to its first three terms, we obtain Fk
(
k

3n

)
∼ 1 +

F ′′
k (0)

2

(
k

3n

)2
,

because Fk
(
k

3n

)
∼ Fk(0) = 1 andF ′

k(0) = 0.
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It can easily be shown that F ′′
k (0) = −

2k2 − 9
(
1− cos

2

3
k
)

4k2
(
1− cos

2

3
k
) . So, it is easy to get from

the last equations that

Fk
(
k

3n

)
∼

(
8 · 32n + 9

)
sin2 k

3
− k2

8 · 32n sin2 k

3

. (1.48)

1.9. Definition and the Main Properties of Functions up m(x)

The function upm(x) is a generalization of up (x). Consider the functional-
differential equation

y′(x) = a
m∑

k=1

(y(2mx+ 2m− 2k + 1) − y(2mx− 2k + 1)). (1.49)

As noted above, we assume that m = 2, 3, 4. . .
Theorem 1. For any m, equation (1.49) has a unique infinite differentiable solution

ym(x)compactly supported on the interval [−1, 1] and satisfying, with a = 2, the

normalization condition ∞∫
−∞

ym(x)dx = 1.

Remark. Since the Fourier transforms of functions upm(x) are represented by infinite
products, upm(x) is an infinite-to-one convolution of some functions. It is interesting
to study these functions.

We can write the following equation:

Fm(t) =
1

imt

m∑

k=1

(
exp

(
it
2k − 1

2m

)
− exp

(
it
−2m+ 2k − 1

2m

))
Fm
(
t

2m

)
. (1.50)

Rewriting the function F
(
t

2m

)
according to formula (1.50) and continuing this process

as made above, we get

Fm(t) =
∞∏

s=1

2
(2m)s=2

it

m∑

k=1

(
exp

(
it
2k − 1

(2m)s

)
− exp

(
it
−2m+ 2k − 1

(2m)s

))
. (1.51)

The function corresponding to the factor with the number s in representation (1.51)
will be denoted by ϕs,m(x), (s = 1, 2, 3, . . . ). From (1.51), taking into account the basic
properties of the Fourier transform, we obtain that, on the interval [–1, 0],

ϕs,m(x) =
k

m
,

(
x ∈

[
−1 +

2k − 1

2m
,−1 +

2k + 1

2m

])
, k = 0, 1, 2, . . . ,m− 1,

(1.52)

and ϕ1,m(x) = 1,
(
x ∈

[
− 1

2m
, 0
])

.
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Furthermore, it is obvious that ϕ1,m(x) is expanded onto the interval [0, 1] as an

even function and vanishes outside the interval [–1, 1]. From representation (1.52) it is
seen that

ϕs+1,m(x) = 2mϕs,m(2mx), (s = 1, 2, 3, . . . ). (1.53)

It can be proved immediately that
∫1

−1
ϕ1,m(x)dx = 1, and it follows from equality (1.53)

that
∫1

−1
ϕs,m(x)dx = 1, (s = 1, 2, 3, . . . ). One should emphasize the fact (used below)

that all ϕs,m are nonnegative and, since the convolution of nonnegative functions is
nonnegative, the function is also nonnegative.

Let us point out and prove the main properties of the functions upm(x).
1. supp upm = [−1,1].

2.
∫1

−1
upm(x)dx = 1.

3. upm(x) =
1

2π

∞∫
−∞

eitx
∞∏
k=1

sin2

(
mt

(2m)k

)

mt

(2m)k
m sin

(
t

(2m)k

)dt.

4. upm ∈ C∞.
5. upm(0) = 1.
6. upm(−x) = upm(x).
7. upm(x) increases monotonically at x ∈ [−1, 0] and decreases at x ∈ [0, 1].

8. Integral shifts of upm(x) form the partition of unity, i.e.,
∞∑

k=−∞

upm(x− k) ≡ 1.

For f(x) ∈ C∞, denote by Nl(f) the set of all x ∈ [−1, 1] such that f (l)(x) = 0. Also
denote Nl( upm) = Nl,m. Then,

9. Nl,m =

{
2s

(2m)l

}∞

l=1

,

(
s ∈ Z, |s| 6

(2m)l

2

)
, N0,m = {−1,1}.

10. || up (n)
m ||C[−1,1] = 2n(2m)

(n−1)n
2 . Henceforward, this value will be denoted

by B
(m)
n .

Let ∆2(f(x)) = f(x− h) − 2f(x) + f(x+ h) be the second difference of the function
f(x) at the point x with the step h.

11. ∆2(up
(l)
m (x)) = 0 at the points x ∈

[
s

m(2m)l

]
with the step

h =
1

m(2m)l
,

(s ∈ Z, |s| < m(2m)l, s 6= 0 (mod m), l = 0, 1, 2 . . . ).

12. For derivatives of the functions upm(x), the following formula is valid:

up (l)
m (x) = B

(m)
l

(2m)l∑

k=1

δ
(m)
k upm

(
(2m)lx+ (2m)l − 2k + 1

)
. (1.54)

Here, δ
(m)
k = (−1)

∑
i

pi

, where pi is the ith digit in the 2m-nary representation of the
number k/m− 1, if m divides k, and the number [k/m], if m does not divide k.

13. Functions upm(x) are nonanalytic everywhere on their supports.
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14. lim upm(x) = B1
m→∞

in the uniform metrics, where

B1 =

{
1− |x|, x ∈ [−1,1],
0, x /∈ [−1,1].

B1 is the B-spline [1, 2].

1.10. Moments and Values of Functions up m(x)

Let µ
(m)
n be the moment of order n for the function upm(x), i.e., µ

(m)
h =

=
1∫
−1

xn upm(x)dx. Since upm(x) is an even function, µ
(m)
2n−1 = 0, (n ∈ N).

Theorem 2. The moments µ
(m)
2n are rational numbers evaluated by the recurrent

formula

µ
(m)
2n =

(2n)!

m2
(
(2m)2n − 1

) ×
n∑

k=1

m∑

l=1

(2l − 1)2k+1

(2n− 2k)!(2k + 1)!
µ

(m)
2n−2k, (n = 1, 2, 3, . . . ). (1.55)

Suppose that

ν
(m)
2n−1 =

1∫

0

xn upm(x)dx for n = 0, 1, 2, . . . . (1.56)

Theorem 3. The formula

ν
(m)
2n−1 =

1

n(2m)2n+1

n∑

l=0

(
2n
2l

) m∑

k=1

(2k − 1)2lµ
(m)
2n−2l (1.57)

takes place.

Theorem 4. The following formula takes place:

upm(xm,n,s) =
2n+1

n!(2m)
(n+1)(n+2)

2

×
s∑

j=1

δ
(m)
j

[n/2]∑

k=0

(
n
2k

)
(2s− 2j + 1)n−2kµ

(m)
2k , (1.58)

where [a] is the integral part of a number a. At s = 1 these formulas are reduced to

upm(xm,n,1) =
1

m!

xm,n,1∫

−1

up (n+1)
m . (1.59)

1.11. Atomic Functions πm(x)

Consider the functional-differential equation

π′
m(x) = a

[
πm (x1(m)) +

2m−1∑

k=2

(−1)kπm (xk(m)) − πm (x2m(m))
]
, (1.60)

where xk(m) = 2mx+ 2m− 2k + 1, x ∈ R1, k = 1, 2m, m = 3, 4, 5, . . .
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Apply the Fourier transform to both sides of equation (1.60) and denote∫∞

−∞ eixtπm(x)dx by Fm(t). Then, the latter equality will take the form

−itFm(t) =
a

2m

[
e−it

2m−1
2m +

2m−1∑

k=2

(−1)keit
2k−1−2m

2m − eit
2m−1
2m

]
Fm (t/2m) .

According to the Euler formula:

Fm(t) =
a

tm

[
sin

2m− 1

2m
t+

2m−1∑

k=2

(−1)k sin
2m− 2k + 1

2m
t

]
Fm (t/2m) .

Passing to the integral in equality (1.60) as t → 0 and taking into account that the
integral of πm(x) equals unity, we get a = 2m2/(3m− 2). From the previous formula,
taking into account the calculated value a, we obtain

Fm(t) =
1

(3m− 2)t/(2m)2
[
sin(2m− 1)t/(2m)2+

+
m∑

k=2

(−1)k sin(2m− 2k + 1)t/(2m)2

]
Fm
(
t/(2m)2

)
.

Then, acting as above, we find

Fm(t) =
m∏

k=1

[
sin(2m − 1)t

(2m)k
+

m∑

ν=2

(−1)ν sin (2m − 2ν + 1) t

(2m)k

]

(3m− 2)t/(2m)k
. (1.61)

Thus, making the inverse Fourier transform of the characteristic function Fm(t), we

obtain the integral representation for πm(x): πm(t) =
1

2π

∞∫
−∞

eixtFm(t)dt, where Fm(t)

is determined by (1.61).
The properties of πm(x) (Figs. 1.6 a–c) are as follows:
1. suppπm(x) = [−1, 1];
2. πm(−x) = πm(x);
3. πm(x) ∈ C∞[−1, 1];

4.
∞∫
−∞

πm(x)dx = 1;

5. πm(0) =

{
m/(3m− 2), if m is odd,
2m/(3m− 2), if m is even;

6. Nν (πm) = Nò
ν , ν > 0,

where the set Nò
ν has the form

Nm
ν = {x ∈ [−1, 1] : x = xn,s = 2s/(2m)n},
{s : −1

2
(2m)n, . . . ,

1

2
(2m)n}, n > 1,

Nm
0 = {x ∈ [−1, 1] : x = x0,s = s = ±1},

{s : −1, 0, 1}, n = 0.

7. ∆2
h2

ν
π

(ν)
m (x) = 0, ∀x ∈ Dm

ν , ν > 0, where Dm
v is the set of points of the interval

[–1, 1] at which the second difference with the step h2v = 2/(2m)v, v > 0, of the vth
derivative of πm(x) equals zero, and Nm

ν = {x ∈ [−1, 1] := x∗v,p = −1 + 2p/(2m)v+1},
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Fig. 1.6. Plots of πm(x) at m = 2, 6, 12.

where p is the running index {p : p ∈ Z+, 0 < p < (2m)v+1, p ≡ ±1 (mod2m)} for
v > 0.

8. ∆1
h1

ν
π

(ν)
m (x) = 0 ∀x ∈ Tmν , ν > 0. The step h1ν is chosen by the definite rule [21].

Tmv is the set of points from the interval [–1, 1] at which the first difference with the step
h1v = ±2/(2m)v, v > 0, of the νth derivative πm(x) vanishes. Tmv = {x ∈ [−1, 1] : x =
= x̃v,j = −2j/(2m)v}, where j is the running index {j : j ∈ Z+, 0 < j < (2m)v+1,
j 6= 0(mod2m), j 6= ±1(mod2m), j 6= ±2(mod2m), } at v > 0.

9.
∥∥∥π(ν)

m (x)
∥∥∥
C[−1,1]

= Kν,m, ν > 0;

10. Functions πm(x) are nonanalytic everywhere on their supports.
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Chapter 2

SPECTRAL PROPERTIES OF ATOMIC FUNCTIONS AND

NOVEL WINDOWS

Let us consider the application of the AF to problems of digital signal processing and
show their efficiency in comparison with processing by classical methods. Below, new
weighting functions (windows) will be proposed and justified [1–4]. Introduction of such
nonstandard windows offers an effective solution to problems that arose in the last years
when a new class of ground-based and airborne radar capable of realizing simultaneous
search and tracking of a large number of different targets appeared. The windows
presented below are constructed by applying products, summations, and convolutions
to simple windows as well as by composing separate parts of the known ones. As a
rule, such windows do not have good performance and some of them are not required in
modern practical needs. Therefore, the construction of new windows on the basis of the
AF is of the great practical interest.

2.1. Synthesis of Novel Weighting Functions (Windows)

The short-term discrete Fourier transform (SDFT) of a signal s(x) is written as

Xk(e
jω) =

∞∑
n=−∞

w(k − n)s(n)e−jωn, where w(k − n) is a weighting function used to

isolate the input signal segment to be processed and corresponding to the discrete
time moment k. Thus, a window w(n) separates the necessary part of the signal by
vanishing the latter outside the domain of interest. The window’s form and width
influence the signal frequency representation. An ideal frequency response must be
characterized by a narrow main lobe providing good resolution, and the lack of sidelobes
corresponding to the leak of energy. The latter is of great interest for signals possessing
of non-uniform spectra with high amplitude and closely located peaks. In this case, the
spectral peaks are extended and sidelobes with decreasing amplitudes are present. The
overlapping of sidelobes corresponding to neighboring spectral peaks can cause their
additional frequency shift, changing the main peaks’ amplitudes and vanishing the small
amplitude spectral components. It is not always possible to increase the length of the
analyzed signal part, which improves the frequency resolution and weakens the effect of
sidelobes overlapping, due to technical restrictions.

The use of the window in time domain influences the leak effect essentially. The
absence of this function for a finite signal part of a signal analyzed is equivalent to
the use of a rectangular window. This window is not optimal in analysis of stationary
signals due to its discontinuity at the ends of the segment processed. A better weighting
function should have zero values at both ends and vary monotonically inside the region of
the processed signal part. The use of windows different from rectangular and smoothing
discontinuities of the signal at the ends of the segment allows one to decrease the
sidelobe level but, at the same time, the main lobe extends and resolution is degraded.

Recently a new class of V. F. Kravchenko–V.A. Rvachev windows based on the
AF was used for solving signal processing problems. The following atomic weighting
functions were applied [1]:

w1(x) = up (x),

2 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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w2(x) = up (x) + 0.01 up ′′(x),

w3(x) = fup 1(3x/2)/ fup 1(0),

w4(x) = ( fup 1(3x/2) + 0.0036 fup ′′
1 (3x/2))/( fup 1(0) + 0.0036 fup ′′

1 (0)),

w5(x) = h3/2(x),

w6(x) = 1.0696(h3/2(x) + h′′3/2(x)/121),

w7(x) = Ξ2(x)/Ξ2(0).

The weighting windows are normalized as follows: w(x)=0 for |x| > 1, w(0) = 1, and
w(−x) = w(x). Figure 2.1 shows the atomic windows w1(x) − w7(x) and their spectra.

Let us test the novel windows for the following properties: w(nT ) = 0, |n| > N

2
, N

is even, w(nT ) = w(−nT ).
To compare characteristics of different windows, the following system of physical

parameters is used:

— equivalent noise bandwidth k1 = 2

1∫

−1

w2(x)dx




1∫

−1

w(x)dx




2
,

— 50% overlapping region correlation k2 =

1∫

0

w(x)w(x− 1)dx

1∫

−1

w2(x)dx

100%,

— spurious amplitude modulation (in dB) k3 = −10 log

∣∣∣∣
W (π/2)

W (0)

∣∣∣∣
2

,

where W (p) is the Fourier transform of the window function;
— maximum conversion losses (in dB) k4 = 10 log (k1) + k3;

— maximum sidelobe level (in dB) k5 = 10 log max
k

∣∣∣∣
W (uk)

W (0)

∣∣∣∣
2

,

where {uk} are the local maximum points (excluding u0);

— asymptotic decay rate of the sidelobes (in dB per octave) k6 = 10 log lim
u→∞

∣∣∣∣
W (2u)

W (u)

∣∣∣∣
2

;

— window width at the 6 dB level k7=2u,

where u is the largest frequency such that 10 log

∣∣∣∣
W (0)

W (u)

∣∣∣∣
2

= 6,

— coherent gain k8 =
1

2

1∫
−1

w(x)dx.

The following classical windows, widely used in practice, are introduced as compar-
ative ones:

Kaiser–Bessel:

w(n) =
I0

I0(α)
α

√
1−

(
2n

N − 1
− 1
)2

, 0 6 n 6 N − 1,

where I0 is the zero-order Bessel function, and α = 2, 2.5, 3, 3.5.
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2*
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Fig. 2.1. Atomic weighting functions (windows) (a, c, e, g, i, k and m) and their Fourier
transforms in a logarithmic scale (b, d, f , h, j, l and n).

Hamming:

w(n) = 0.54− 0.46 cos
(
2π

n

N − 1

)
, 0 6 n 6 N − 1.

Blackman–Harris (four-termed):

w(n) = 0.35875− 0.4883 cos
(
2π

N
n
)

+ 0.1413 cos
(
2π

N
2n
)
−

− 0.0117 cos
(
2π

N
3n
)
, 0 6 n 6 N − 1.

The comparative analysis of the main parameters of classical and new weighting
functions is given in Tables 2.1 and 2.2.

2.2. Application of New Weighting Functions in Problems
of Speech Synthesis

One of the main methods of speech processing is the short period spectral analysis
(SSA) of speech, which provides a basis for numerous speech recognition systems,
spectrographs, and voice coders. In its turn, the SSA involves the short period DPF
(SDPF) of a speech segment weighted with a special window. Window functions are
widely used in homomorphic speech processing, linear prediction, and encoding.

The detailed analysis of different algorithms of speech processing and prediction will
be presented in the third part of this book.

As is known, speech signals can be categorized into voiced and unvoiced (fricative)
speech. As compared with fricative speech, voiced speech has a higher energy level
and a quasi-periodic structure. There exist transitional segments between voiced and
unvoiced segments. One of the basic methods of speech processing is the SSA, which is
based on the SDFT and enables one to reveal the signal features that cannot be detected
in the time domain.
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Table 2.1. Main physical parameters of classical and Kravchenko–Rvachev windows.

Parameters
Windows

b1 b2 b3 b4 b5 b6 b7 b8

Rectangular 1.0 50 3.9 3.9 −13.3 −6 1.2 1

Triangular (Bartlett) 1.3 25 1.8 3.1 −26.5 −12 1.7 0.5

Hamming 1.4 23 1.8 3.1 −43 −6 1.8 0.54

Hanning 1.5 17 1.4 3.2 −31.5 −18 1.9 0.5

Blackman 1.7 9 1.1 3.5 −58 −18 2.4 0.42

Kaiser–Bessel (β = 3) 1.8 7 1.0 3.6 −69 −6 2.4 0.4

Gauss (α = 6.25) 1.5 19 1.6 3.2 −42 −6 1.9 0.49

Kravchenko–Rvachev:

w1(x) 1.6 12 1.2 3.3 −23.3 −∞ 2.1 0.5

w2(x) 1.5 17 1.4 3.1 −32.4 −∞ 1.9 0.5

w3(x) 1.9 6 0.9 3.6 −37.2 −∞ 2.4 0.39

w4(x) 1.8 7 1.1 3.6 −51 −∞ 2.3 0.4

w5(x) 1.3 30 0.7 1.7 −36 −∞ 2.9 0.52

w6(x) 1.2 32 0.8 1.7 −51 −∞ 2.5 0.55

w7(x) 1.9 5 0.9 3.7 −34 −∞ 2.4 0.38

Table 2.2. Main physical parameters of windows constructed on the basis of fupN (x).

ParametersfupN ((N + 2)x/2)

fupN (0) b1 b2 b3 b4 b5 b7 b8

N = 0 1.62 12 1.21 3.3 −23.3 2.08 0.5

N = 1 1.86 6 0.93 3.64 −37.2 2.4 0.39

N = 2 2.1 3 0.75 3.96 −50.8 2.7 0.35

N = 3 2.31 1 0.62 4.25 −64.2 2.97 0.31

To illustrate the aforesaid, let us consider a model of the speech signal [7–12]
s(t) = sin(2π · 500t) + 0.7 sin(2π · 1350t) + 0.3 sin(2π · 2300t) + 0.2 sin(2π · 3400t) in the
presence of additive noise with a zero mean and a unit amplitude (Fig. 2.2 a). Using
the atomic window w1(x), let us process a 10ms signal segment (Fig. 2.2 b). The signal
is sampled in frequency intervals of 10 kHz. Figures 2.2 c, d show the logarithmic
absolute values of the SDFT of a signal weighted with the rectangular and atomic
w1(x) windows. Since the Fourier transform of up(x) is known, the SDFT can easy be
computed for the AF window. It is seen that the peaks of the frequency response that
correspond to the harmonics of the original signal are narrower and sharper in the case
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Fig. 2.2. Models of an original speech signal (а), the signal treated with atomic window w1(x)
(b), and the corresponding logarithmic absolute values of the SDFTs of a signal weighted with

rectangular (c) and atomic (w1(x)) (d) windows.

of a rectangular window (high-frequency resolution). At the same time, since high-level
sidelobes result in energy loss in this case, the short-period spectrum looks noisier than
the spectrum obtained in the case of the AF window. This circumstance hampers the
identification of the original harmonics. Figure 2.3 demonstrates the short-period power
spectrum of a signal weighted with the window w1(x). The peaks corresponding to the
harmonics of the input sequence are clearly displayed.

Fig. 2.3. Short period spectrum of an original speech signal (X) and the amplitude-frequency
characteristic of a voice channel calculated using linear prediction (H).
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Fig. 2.4. Short period power spectrum of a signal segment treated with the atomic window w1(x).

Consider linear predictive coding applied to the determination of the frequency
of the fundamental tone in the speech recognition, synthesis, and encoding. We
suppose that discrete sequence s[n] can be predicted from its preceding values

s̃[n] = −
P∑
k=1

a[k]s[n− k], where P is the order of a linear predictor and a[k] are

the coefficients of linear prediction. To minimize the prediction error, we use the
least-squares method, which yields the system of equations:

P∑

k=1

â[k]
∑

n

s[n− k]s[n−m] = −
∑

n

s[n]s[n−m], 1 6 m 6 P ,

where â[k] are the estimates of a[k]. In the general case, the summation must be
performed over all n. However, actually, only a finite number of samples s[n] are
summed up, so as to make sequence s[n] stationary. To this end, this sequence is
truncated by the window w[n]:

s′[n] =

{
s[n]w[n], 0 6 n 6 N − 1,
0, otherwise.

So, we obtain the system r[m] = −
P∑
k=1

â[k]r[m − k], 1 6 m 6 P , where r[m] =

=
1

N −m

N−1−m∑
n=0

s′[n]s′[n+m] is the autocorrelation function of sequence s′[n]. Taking

into account that the autocorrelation function is even, the above system of equations can
be solved using the Levinson–Durbin recursive algorithm.

Linear speech prediction can be used for determining the frequency response of
a voice channel:

H(ejω) =
G

1 +
P∑

k=1

â[k]e−jkω

,

where G is the gain. Figure 2.4 displays the short period spectrum of the original
speech signal and the amplitude–frequency characteristic of the voice channel calculated
using the linear prediction. The results are obtained with the atomic window w1(x) and
the predictor of order P=10. The formants of the harmonic signal are clearly observed
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in the plot. Using other atomic windows, one can efficiently solve more complicated
problems of speech processing.

2.3. AF up (x), fup N(x), Ξn(x) and Their Combinations Used in
Digital Signal Processing

The analysis of the results obtained above makes it possible to synthesize windows
that are optimal from the viewpoint of sidelobe level minimization. Such windows
should vanish at both ends and vary monotonically inside the interval. The use of the
AFs, which satisfy such conditions, ensures decreasing the sidelobe level at the expense
of the main lobe extension. The optimal choice of the window is determined by a
compromise between the noise shift in the domain of sidelobes. So, if signal spectral
components close with respect to the amplitudes, are situated both in the vicinity and
far from the weak component, then windows with an equal level of sidelobes should
be chosen. If we want to obtain high resolution between close signal components and
distant components are absent, then windows with very narrow main lobe and minimum
amplitude of neighboring sidelobes are required [2, 3]. Let us introduce the class of
weighting windows based on the AFs up (x), fupN (x), Ξn(x), and their combinations
with classical windows and consider the relation between their parameters and the
function behavior.

2.4. Convolution Operation in Synthesis of New Windows

The synthesis of the weighting window w(x) and the system of physical parameters
were considered earlier. Here, we investigate new synthesized windows based on the
AFs under the following assumptions: w(nT ) = 0, |n| > N/2, N is even, and w(nT ) =
= w(−nT ).

Let consider the window K = up (x) ∗ up (x) (Table 2.3) and determine its physical
parameters.

Evaluations were performed for N = 50.

1. Equivalent noise bandwidth k1(K) = 50 · 0.0468 = 2.34.
2. Overlap correlation (50%) k2(K) = 0.8%.
3. Spurious amplitude modulation k3(K) = 0.6.
4. Maximum conversion losses k4(K) = 4.3 dB.
5. Maximum sidelobe level k5(K) = −47 dB.
6. Sidelobe asymptotic decay rate k6(K) = −∞.
7. Window width at the six-decibel level k7(K) = 3.05.
8. Coherent gain k8(K) = 0.31.

For comparison, let present computational data for the synthesized window K2 =
= up (x) ∗ up (x) ∗ up (x) ∗ up (x) (Table 2.2, Figs. 2.5 c and d).

1. Equivalent noise bandwidth k1(K2) = 3.35.
2. Overlap correlation (50%) k2(K2) = 0.004%.
3. Spurious amplitude modulation k3(K2) = 0.3.
4. Maximum conversion losses k4(K2) = 5.55 dB.
5. Maximum sidelobe level k5(K2) = −93.2 dB.
6. Sidelobe asymptotic decay rate k6(K2) = −∞.
7. Window width at the six-decibel level k7(K2) = 4.45.
8. Coherent gain k8(K) = 0.21.
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2.5. Numerical Simulations

The comparative numerical analysis of the new synthesized windows of Kravchenko
(Table 2.3) and classical windows (Kaiser–Bessel, Hamming, four-termed Blackman–
Harris) has demonstrated their advantages over the known windows with respect to
some physical parameters. The new windows have low spurious amplitude modulation
and sidelobe level, which, varying from −47 dB to −139.8 dB, is essentially dependent
on the order of convolution. Correspondingly, the increased number of convolutions
increases losses and mainlobe width. Another group of V. F. Kravchenko’s windows is
composed of convolutions of the AF Ξn(x). The main parameters of the windows KΞ2

and KΞ4
are as follows (Table 2.3).

Table 2.3. Main physical parameters of the new windows synthesized by Kravchenko in compari-
son with classical ones.

Windows

Equiva-
lent
noise
band-
width,
bin

Overlap
correla-
tion
(50%)

Spurious
ampli-
tude

modula-
tion,
dB

Maxi-
mum
con-

version
losses,
dB

Maxi-
mum

sidelobe
level, dB

Sidelobe
asymp-
totic de-
cay rate,
dB per
octave

Window
width at
the six-
decibel
level, bin

Co-
her-
ent
gain

k1 k2 k3 k4 k5 k6 k7 k8

K (Krav-
chenko)

2.34 0.8 0.6 4.3 −47 −∞ 3.05 0.31

K1 2.9 0.06 0.4 5 −69.8 −∞ 3.82 0.25

K2 3.35 0.004 0.3 5.55 −93.2 −∞ 4.45 0.21

K3 3.75 2.9 10−4 0.24 5.98 −116.4 −∞ 4.90 0.19

K4 4.11 2.1 10−5 0.2 6.34 −139.8 −∞ 5.41 0.17

KΞ2
1.89 4.95 0.9 3.67 −34 −∞ 2.51 0.5

KΞ3
2.14 2.1 1.35 4.66 −51 −∞ 2.05 0.5

KΞ4 2.35 0.9 1.8 5.5 −68 −∞ 1.78 0.5

KΞ6
2.73 0.7 2.7 7.1 −102 −∞ 1.5 0.5

KB,
a = 3, 0

1.8 7.4 1.02 3.56 −69 −6 2.39 0.4

KB,
a = 3, 5

1.93 4.8 0.89 3.74 −82 −6 2.57 0.37

Ham-
ming

1.36 23.5 1.78 3.1 −43 −6 1.81 0.54

BH, four
termed

2 3.8 0.83 3.85 −92 −6 2.72 0.36

1. Equivalent noise bandwidth

k1(KΞ2
) = 50 · 0.0178 = 1.89, k1(KΞ4

) = 50 · 0.047 = 2.35.

2. Overlap correlation (50%)

k2(KΞ2
) = 4.95%, k2(KΞ4

) = 0.9%.
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3. Spurious amplitude modulation

k3(KΞ2
) = −10 log |W (π/2)/W (0)|2 = 0.9, k3(KΞ4

) = 1.8.

4. Maximum conversion losses

k4(KΞ2
) = 10 log (1.89) + 0.9 = 3.67 dB, k4(KΞ4

) = 5.5 dB.

5. Maximum sidelobe level

k5(KΞ2
) = −34 dB, k5(KΞ4

) = −68 dB.

6. Sidelobe asymptotic decay rate

k6(KΞ2
) = −∞, k6(KΞ4

) = −∞
7. Window width at the six-decibel level
8. k7(KΞ2

) = 2.51, k7(KΞ4
) = 1.5.

9. Coherent gain
10. k8(KΞ2

) = 0.5, k8(KΞ4
) = 0.5.

Notice a high selectivity of this group of the Kravchenko windows: an increasing
number of convolutions causes a decrease of the six-decibel bandwidth from 2.51 bin
(windowKΞ2

) to 1.5 bin (window KΞ6
). The latter window (KΞ6

), apart from its good
selectivity, possesses a low sidelobe level (−102 dB), low values of overlapping areas
correlation (on the average, tenfold those for classical windows), and can be used for
filtration of signals with a small distance between spectral peaks of equal intensity (for
example, in digital radar, when it is necessary to detect a group of targets) and without
strict requirements on the spurious amplitude modulation level.

Table 2.4. Main physical parameters of the new synthesized windows: Kravchenko–Hamming,
Kravchenko–Kaiser–Bessel, Kravchenko–Blackman–Harris.

Windows

Equiva-
lent
noise
band-
width,
bin

Overlap
correla-
tion

(50%)

Spurious
ampli-
tude

modula-
tion,
dB

Maxi-
mum
con-

version
losses,
dB

Maxi-
mum

sidelobe
level, dB

Sidelobe
asymp-
totic de-
cay rate,
dB per
octave

Window
width at

the
sixdeci-
bel level,

bin

Co-
her-
ent
gain

k1 k2 k3 k4 k5 k6 k7 k8

KH 2.14 2.06 0.74 4.05 −71.2 −∞ 2.78 0.35

KH1 2.68 0.21 0.46 4.74 −96 −∞ 3.5 0.27

KH2 3.17 0.016 0.17 5.1 −120 −∞ 4.1 0.23

KH3 3.6 0.0012 0.026 5.8 −143 −∞ 4.77 0.2

KKB 2.44 0.58 0.56 4.43 −50.2 −∞ 3.2 0.29

KKB1 2.97 0.042 0.38 5.1 −75.4 −∞ 3.9 0.24

KKB2 3.4 0.003 0.29 5.6 −100 −∞ 4.45 0.21

KKB3 3.81 2.3 10−4 0.24 6 −123.6 −∞ 4.9 0.19

KBH 2.55 0.31 0.5 4.6 −44.2 −∞ 3.37 0.28

KBH1 3.05 0.023 0.36 5.2 −68.7 −∞ 3.97 0.25

KBH2 3.46 0.0026 0.233 5.6 −115.8 −∞ 5.09 0.21

KBH3 3.85 1.9 10−4 0.23 6 −116.2 −∞ 5.1 0.19
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If weighting functions (windows) with small values of correlation, spurious amplitude
modulation, and maximum sidelobe level (up to –143dB) are needed, one can use
the sythesized Kravchenko–Hamming windows (Table 2.4), Kravchenko–Kaiser–Bessel
windows (Table 2.4), and Kravchenko–Blackman–Harris windows (Table 2.4). All these
windows have the infinite rate of sidelobe decay and small values of conversion losses.
The main physical parameters of the new windows are presented in Tables 2.3 and 2.4

The diagram (Figure 2.5) illustrating the relation between conversion losses and
maximum sidelobe level is important from the viewpoint of practical usage of weighting
windows. A conclusion can be made that the new synthesized windows situated in
the left lower corner of this diagram have the best quality. These windows have
low sidelobe levels but relatively high values of conversion losses. The passage to
translations and dilations of windows using the properties of the AF allows gives an
essential improvement in the latter parameter.

Table 2.5 shows dependences of all main physical parameters of the new synthesized
windows (Kravchenko K, Kravchenko–Hamming KH1, and Kravchenko–Kaiser–Bessel
KKB2).

Table 2.5. Parameters of the new synthesized Kravchenko windows versus their time-domain
dilation.

Win-
dows

Relative
time-
domain
dilation,

%

Equiva-
lent
noise
band-
width,
bin

Over-
lap
cor-
rela-
tion
(50%)

Spurious
ampli-
tude

modula-
tion,
dB

Max-
imum
con-
ver-
sion
losses,
dB

Maxi-
mum

sidelobe
level,
dB

Sidelobe
asymp-
totic de-
cay rate,
dB per
octave

Win-
dow
width
at the
six-
decibel
level,
bin

Co-
her-
ent
gain

k1 k2 k3 k4 k5 k6 k7 k8

0 2.34 0.8 0.6 4.3 −46.66 −∞ 3.05 0.31

10 2.1 2.35 0.74 3.96 −46.6 – 2.78 0.34
K

20 1.87 5.64 0.94 3.66 −46 – 2.46 0.39

40 1.42 20.5 1.67 3.2 −37.5 – 1.83 0.51

0 2.68 0.21 0.46 4.74 –96 −∞ 3.5 0.27

10 2.42 0.74 0.57 4.41 −84 – 3.2 0.3
KH1

20 2.1 2.25 0.72 4.05 −75.1 – 2.85 0.33

40 1.62 12.4 1.28 3.38 −57 – 2.15 0.44

0 3.4 0.003 0.29 5.6 −100 −∞ 4.45 0.21

10 3.1 0.03 0.36 5.27 −100 – 4.07 0.23

KKB2 20 2.73 0.2 0.45 4.8 −99 – 3.6 0.26

35 2.21 1.82 0.68 4.13 −96 – 2.93 0.32

60 1.39 21.5 1.8 3.24 −60 – 1.78 0.52

If we dilate the weighting functions (windows) in the time domain, the following
effects can be detected: the equivalent noise bandwidth and window width at the
six-decibel level decrease for all windows and maximum conversion losses decrease
significantly. Here, the following shortcomings should be noted: the correlation of
overlapping regions increases and the parasitic amplitude modulation deteriorates. These
effects are detected for the constant sidelobe level. Thus, the windows investigated are
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not inferior to the known classical ones in their physical parameters, while some other
parameters are sufficiently better. The obtained wide class of new weighting windows
can be widely used in digital processing of signals with various spectral characteristics.

Fig. 2.5. Relation between conversion losses and maximum sidelobe level for some synthesized
Kravchenko’s windows.

2.6. Spectral Properties of New Weighting Functions Used in
Digital Signal Processing

As is known, one of the main questions, common for all classic problems of
signal spectral estimation, is the use of weighting functions (windows). Digital signal
processing by means of windows is applied in practice for control of physical effects by
spectral estimates in the presence of sidelobes. A new method for constructing weighting
functions is developed and justified below. It is based on the combination (direct
product) of the AFs fup n(x) with the classical Gauss, Bernstein, and Dolph–Chebyshev
functions. Characteristics of the new weighting functions as well as those of classical
Hamming, Blackman–Harris, Natoll, and Kaiser–Bessel windows are presented [1–11].
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2.7. Atomic Function fup N(x) and Methods for Its Evaluation

The compactly supported functions fupN (x) are the so-called fractional components
of the function up (x).

The numerical realization requires computation of an infinite product and integration
on the whole real axis. So, in practice, it is advisable to take the finite number of terms
in the product

f̂upN (x) =
1

2π

∞∫
−∞

ejux
(

sin (u/2)

u/2

)N M∏

k=1

sin
(
u · 2−k)

u · 2−k
du.

For M = 5, the relative error
fupN (x) − f̂upN (x)

fupN (x)
does not exceed 0.1% at the ends of

the support. For computations, it is more convenient to use the Fourier trigonometric

expansion.
For M = 20 and 10, the relative error at the boundaries of the interval [−2, 2] (for

fup 2(x)) does not exceed 0.05%. Here, computational efficiency increases sufficiently,
because we do not evaluate improper integrals.

2.8. New Synthesized Windows

Window parameters. To estimate weighting functions, the following physical
characteristics are used [6]: 1. Equivalent noise bandwidth (ENB); 2. Overlap correlation
(50% overlap); 3. Spurious amplitude modulation (AM); 4. Maximum transformation
loss; 5. Maximum sidelobe level; 6. 6-dB bandwidth; 7. Coherent gain; 8. Performance
functional value.

The performance functional of new weighting functions. The performance functional
J(w) = ‖w − wet‖L2[−1;1] = min is introduced for determining optimal weighting func-

tions. This procedure consists of several stages. In the first stage, the aforementioned

physical parameters of windows must be determined. In the second stage, values of
the performance functional J(w) for specific windows are evaluated. The analytical
expression for the performance functional is

J(w) = J (k4(w), k5(w), k7(w)) =

(
k4(wi) − k4(we)

k4(we)

)2

+

+

(
k5(wi) − k5(we)

k5(we)

)2

+

(
k7(wi) − k7(we)

k7(we)

)2

, (2.1)

where we is the standard window with the desired parameters k4 = 3 dB, k5 = −100 dB,
and k7 = 0.5.

Definitions and designations of the new weighting functions are presented in Ta-
ble 2.6.

The results of calculations according to equation (2.1) are shown in Table 2.7. The
windows presented in Table 2.7 are normalized by w(0).

Some known windows are also shown for comparison:
The Gauss function: Gα(t) = exp(−(αt)2/2).
The Bernstein–Rogozinskii function: B(t) = cos(πt/2).

The Dolph–Chebyshev function: Dα(n) = F−1 [Wα(n)],
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where

Wα(n) = (−1)n
cos
[
N arccos

(
βα cos

[
π
(

n

N
− 1

2

)])]

ch
[
N ch−1 (βα)

] ,

and βα = ch
[
1

N
ch−1 (10α)

]
. The domain is n ∈ [−N/2,N/2].

Conversion from continuous time to discrete time is realized according to the
following scheme (Fig. 2.6). First, the original window w(x) is digitized with respect to
the time variable w[nT ] = w(t)|t=nT .

Fig. 2.6. Passage from a continuous window in time domain to amplitude-frequency response in
frequency domain.

Since T is constant (the sampling period), window values can be denoted by w[n].
Then, we apply the DFT procedure to the obtained discrete window w[n]. If the number
of samplings is multiple of 2k, then we can use the fast Fourier transform (FFT):

W (ω) = F [w[nT ]] =
N−1∑

n=0

w[n] · exp (−jωnT ),

where ωk =
2π

N
is the sampling frequency.

Let illustrate this process with the window Ê4
2. Pass from the continuous window

w(t) = fup 4
2(t) to the discrete one w[nT ] = fup 4

2(t)
∣∣
t=nT

. We get the Fourier transform

as W (ω) =
N−1∑
n=0

fup 4
2[nT ] · exp· (−jωnT ). Here, we present values of physical parame-

ters of the Kravchenko window Ê4
2 (N = 100):

a. Equivalent noise bandwidth:

k1(w(x)) = 100 · 0.0199 ≈ 1.99 (bin) .

b. 50% overlap correlation:

k2(w(x)) =
1.10

25.88
· 100% = 4.25%.

c. Spurious AM (dB):

k3(w(x)) = −10 · lg
∣∣∣32.73
36.10

∣∣∣
2

= 0.85 (dB),
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where W (θ) is the Fourier transform of the window.
d. Maximum transformation losses:

k4(w(x)) = 10 · lg(1.99) + 0.85 = 3.83 (dB).

e. Maximum sidelobe level:

k5(w(x)) = −51.6(dB),

where {θk} are the points of local maximums (excluding θ0).
f. Window width at the six-decibel level k6(w(x)) = 2θ = 2.63, where θ is the highest

frequency such that 10 log

∣∣∣∣
W (0)

W (θ)

∣∣∣∣
2

= 6.

g. Coherent gain:
k7(w(x)) = 0.36.

Performance functional value:

J(w) =
(
3.83− 3

3

)2
+
(−51.6 + 100

−100

)2
+
(
0.36− 0.5

0.5

)2
= 0.38.

Tab l e 2.6. The new synthesized Kravchenko windows.

№ Windows Discrete-time function w(n)

1 Kravchenko (K4
2 ) w(n) = fup 4

2(2n/N)

2 Kravchenko–Gauss (K2G2) w(n) = fup 2(2n/N) ·G2(2n/N)

3 Kravchenko–Gauss (K2
2G2) w(n) = fup 2

2(2n/N) ·G2(2n/N)

4 Kravchenko–Gauss (K2G3) w(n) = fup 2(2n/N) ·G3(2n/N)

5 Kravchenko–Bernstein–Rogozinskii (K2BR
2) w(n) = fup 2(2n/N) ·B2(2n/N)

6 Kravchenko–Bernstein–Rogozinskii (K2
2BR) w(n) = fup 2

2(2n/N) ·B (2n/N)

7 Kravchenko–Bernstein-Rogozinskii (K2
2BR

2) w(n) = fup 2(2n/N) ·B2(x)

8 Kravchenko (K4
4 ) w(n) = fup 4

4(2n/N)

9 Kravchenko–Gauss (K2
4G

2
2) w(n) = fup 2

4(2n/N) ·G2
2(2n/N)

10 Kravchenko–Gauss (K4
4G2) w(n) = fup 4

4(2n/N) ·G2(2n/N)

11 Kravchenko–Gauss (K4G3) w(n) = fup 4(2n/N) ·G3(2n/N)

12 Kravchenko–Gauss (K2
4G3) w(n) = fup 2

4(2n/N) ·G3(2n/N)

13 Kravchenko–Bernstein–Rogozinskii (K2
4BR) w(n) = fup 2

4(2n/N) ·B (2n/N)

14 Kravchenko–Bernstein–Rogozinskii (K2
4BR

2) w(n) = fup 2
4(2n/N) ·B2(2n/N)

15 Kravchenko–Dolph-Chebyshev (K4C3) w(n) = fup 4(2n/N) ·D3(2n/N)

16 Kravchenko–Dolph-Chebyshev (K4C3.5) w(n) = fup 4(2n/N) ·D3,5 (2n/N)

17 Kravchenko–Gauss (K2
6G

2
2) w(n) = fup 2

6(2n/N) ·G2
2(2n/N)

18 Kravchenko–Gauss (K6G3) w(n) = fup 6(2n/N) ·G3(2n/N)

19 Kravchenko–Gauss (K2
6G3) w(n) = fup 2

6(2n/N) ·G3(2n/N)

20 Kravchenko–Bernstein–Rogozinskii (K2
6BR

2) w(n) = fup 2
6(2n/N) ·B2(2n/N)
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Tab l e 2.7. Main physical parameters of the new Kravchenko windows and the classical windows.

№ Windows

Equivalent
noise

bandwidth,
bin

Overlap
correlation
(for the 50%
overlap), %

Spurious
amplitude
modulation,

dB

Maximum
transfor-
mation
loss, dB

Maxi-
mum

sidelobe
level, dB

6-dB
band-
width,
bin

Coher-
ent
gain

Func-
tional
value

1 Kravchenko (K4
2 ) 1.9861 4.2498 0.8518 3.8318 −51.6112 2.6276 0.3610 0.3883

2 Kravchenko–Gauss (K2G2) 1.5327 15.6455 1.4128 3.2673 −46.2344 2.0213 0.4675 0.3012

3 Kravchenko–Gauss (K2
2G2) 1.8105 7.4054 1.0259 3.6038 −53.7964 2.4255 0.3944 0.2986

4 Kravchenko–Gauss (K2G3) 1.9643 4.7297 0.8781 3.8101 −68.8390 2.6276 0.3614 0.2469

5
Kravchenko–Bernstein–

Rogozinskii
(K2BR

2)
1.7393 8.5152 1.0775 3.4812 −45.7927 2.2234 0.4203 0.3450

6
Kravchenko–Bernstein–

Rogozinskii
(K2

2BR)
1.7411 8.6540 1.0856 3.4939 −55.1020 2.2234 0.4166 0.2565

7
Kravchenko–Bernstein–

Rogozinskii
(K2

2BR
2)

1.9674 4.1803 0.8528 3.7917 −54.5747 2.6276 0.3676 0.3461

8 Kravchenko (K4
4 ) 1.6295 12.2556 1.2596 3.3801 −52.1313 2.2234 0.4371 0.2610

9 Kravchenko–Gauss (K2
4G

2
2) 1.9631 4.7869 0.8809 3.8103 −70.6203 2.6276 0.3607 0.2369

10 Kravchenko–Gauss (K4
4G2) 1.9696 4.6700 0.8742 3.8180 −71.2806 2.6276 0.3598 0.2355

11 Kravchenko–Gauss (K4G3) 1.8782 6.1922 0.9609 3.6984 −64.4774 2.4255 0.3770 0.2409

12 Kravchenko–Gauss (K2
4G3) 2.0415 3.7429 0.8156 3.9152 −74.8054 2.6276 0.3467 0.2505

13
Kravchenko–Bernstein–

Rogozinskii
(K2

4BR)
1.5642 14.1583 1.3313 3.2743 −48.9544 2.0213 0.4661 0.2735

14
Kravchenko–Bernstein–

Rogozinskii
(K2

4BR
2)

1.8126 6.8755 0.9986 3.5816 −62.1117 2.4255 0.3998 0.2213
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Continuation of Table 2.7.

№ Windows

Equivalent
noise

bandwidth,
bin

Overlap
correlation
(for the 50%
overlap), %

Spurious
amplitude
modulation,

dB

Maximum
transfor-
mation
loss, dB

Maxi-
mum

sidelobe
level, dB

6-dB
band-
width,
bin

Coher-
ent
gain

Func-
tional
value

15
Kravchenko–Dolph-Chebyshev

(K4C3)
1.6932 10.1129 1.1569 3.4441 −65.4653 2.2234 0.4248 0.1638

16
Kravchenko–Dolph-Chebyshev

(K4C3.5)
1.8007 7.3910 1.0249 3.5793 −74.9523 2.4255 0.3988 0.1410

17 Kravchenko–Gauss (K2
6G

2
2) 1.8782 6.1959 0.9611 3.6986 −64.2160 2.4255 0.3769 0.2429

18 Kravchenko–Gauss (K6G3) 1.8344 7.0420 1.0064 3.6414 −62.2970 2.4255 0.3860 0.2398

19 Kravchenko–Gauss (K2
6G3) 1.9598 4.8492 0.8844 3.8066 −70.2968 2.6276 0.3611 0.2377

20
Kravchenko–Bernstein–

Rogozinskii
(K2

6BR
2)

1.7336 8.6977 1.0859 3.4753 −51.1199 2.2234 0.4201 0.2896

21 Rectangular 1.0000 50.0000 3.9224 3.9224 −13.2799 1.2128 1.0000 1.8466

22 Triangular 1.3333 25.0001 1.8242 3.0736 −26.5077 1.8191 0.5000 0.5407

23 Gauss α = 2 1.2327 31.1469 2.1279 3.0366 −36.9155 1.6170 0.5981 0.4366

24 Gauss α = 2.5 1.4456 19.3529 1.5802 3.1807 −43.2656 2.0213 0.4951 0.3256

25 Gauss α = 3 1.7017 10.1829 1.1632 3.4721 −56.0922 2.2234 0.4166 0.2454

26 Gauss α = 3.5 1.9765 4.6147 0.8702 3.8292 −71.0006 2.6276 0.3579 0.2413

27 Hamming 1.3638 23.3241 1.7492 3.0967 −45.9347 1.8191 0.5395 0.2996

28 Blackman-Harris (four-termed) 2.0044 3.7602 0.8256 3.8453 −92.0271 2.6276 0.3587 0.1656

29 Natoll (four-termed) 1.9761 4.1760 0.8506 3.8087 −97.8587 2.6276 0.3636 0.1475

30 Dolph-Chebyshev (α=3.5) 1.6328 11.8490 1.2344 3.3636 −70.0161 2.2234 0.4434 0.1174

31 Bernstein–Rogozinskii 1.2337 31.8309 2.0982 3.0103 −23.0101 1.6170 0.6366 0.6674

32 Kaiser α = 3 1.7952 7.3534 1.0226 3.5639 −69.6568 2.4255 0.4025 0.1654
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The performance functional J(w) (Fig. 2.7) takes into account three the most
important parameters: maximum transformation losses, maximum sidelobe level, and
coherent gain. As is seen from Table 2, the Kravchenko–Dolph–Chebyshev (K4C3,
K4C3.5) and Kravchenko–Bernstein–Rogozinskii (K2

4BR
2) windows have the lowest

levels of J(w), because they possess low sidelobe levels, small transformation losses,
and good coherent gain.

Fig. 2.7. Performance functional J(w) for new synthesized Kravchenko windows. Minimum
values correspond to the best windows. The windows are 1. K4

2 , 2. K2G2, 3. K
2
2G2, 4. K2G3,

5. K2BR
2, 6. K2

2BR, 7. K
2
2BR

2, 8. K4
4 , 9. K

2
4G

2
2, 10. K

4
4G2, 11. K4G3, 12. K

2
4G3, 13. K

2
4BR,

14. K2
4BR

2, 15. K4C3, 16. K4C3.5, 17. K
2
6G

2
2, 18. K6G3, 19. K

2
6G3, 20. K

2
6BR

2.

2.9. Signal Filtration Using the New Windows

The following example shows the efficiency of using windows for detecting a
small signal in the presence of an intensive closely located line. Let us study the
amplitude–frequency response of the signal generated by the sum of two sinusoids:
x1 = sin (10 · 2π · x) and x2 = 0,01 · sin (16 · 2π · x). Since the frequency of each signal
is multiplied by the number of bins in the DFT, both lines can easily be detected even
when the rectangular window is used (Fig. 2.8 a). In this and next figures, axis x
corresponds to the frequency in bins and axis y corresponds to the rate of decrease
of signal’s logarithmic amplitudes. Let us change the frequency of the more powerful
signal, so that it will be placed between two neighboring bins. In this case, the picture
sharply varies: the weak signal is hidden by the high sidelobes of the powerful signal
(Fig. 2.8 b). Let us study changes in the spectra if the new synthesized Kravchenko
windows are used. We will consider the behavior of the classical Hamming window
(Fig. 2.9). As is seen from the LAFR, at the distance of 5.5 bins, the sidelobe
level is −43 dB, which exceeds the powerful signal’s sidelobe by 3 dB at the same
frequency. Here, mutual signal suppression due to the phase opposition is observed
along with a leakage of spectral components at positive and negative frequencies.
Signals with the level lower than that of the powerful signal by 50 dB cannot be
detected.



2.9. Signal Filtration Using the New Windows 51

Consider the results of using Kravchenko windows Ê4
2 and Ê4

4 (Fig. 2.10). For the
first of them (Fig. 2.10 a), the minimum of ∼ 14 dB between two kernels is observed.
However, an artifact appears at low frequencies (the right sidelobe of the window),
which is similar to a signal with the amplitude of −55 dB at bin 7 of the DFT. As is
seen, window Ê4

4 (Fig. 2.10 b) has a minimum of ∼ 16 dB and a relatively weak diffusion
of the main lobe.

Consider the filtering properties of the Kravchenko–Gauss windows K2G2, K
2
2G2,

and K2G3 (Fig. 2.11). In this case, the first of them (Fig. 2.11 a) contains
a false artifact with a level −60 dB at bin 7, although it provides the required level
of signal recognition (∼ 7 dB). The other windows (Figs. 2.11 b–c) ensure a very
effective recognition (the minimum between signals is 11–20 dB). The results for the
family of Kravchenko–Bernstein–Rogozinskii’s windows (K2BR

2, K2
2BR, and K

2
2BR

2)
are presented in Figs. 2.12 a–c. Here, the minimum between two peaks is within
∼ 12− 20 dB, which is a very good result. The window Ê2Á�2 demonstrates the best
quality of detection. It has a relatively narrow leakage band, and an artifact caused by a
unity sidelobe has a level of −60 dB, which does not influence essentially the quality of
recognition. Let us analyze the results of using the Kravchenko–Gauss windows (K2

4G
2
2,

K4
4G2, K4G3, and K2

4G3) in processing the signal under study (Fig. 2.13). Analysis
of physical results shows that they provide detection of a weak signal with a minimum
of 5–13 dB between peaks. It should be noted that these windows possess a small
diffusion in the limits of the frequency band considered. Figure 2.14 shows the spec-
trum behavior after applying the new family of the Kravchenko–Bernstein–Rogozinskii
windows (K2

4BR and K2
4BR

2). The second signal is clearly distinguishable from the
first one on these plots. For the window K2

4BR (Fig. 2.14 a), an artifact exists.
It is caused by the presence of sidelobes at the level of −53 dB. Figure 2.15 presents
the results of applying the Kravchenko–Chebyshev windows. Note that, in both cases,
the second signal is clearly distinguishable and the minimum between two peaks
is equal to 15–20 dB. At the same time, on Fig. 2.15 a, an artifact caused by a
high sidelobe level is observed to the left from the first kernel. The results for the
Kravchenko–Bernstein–Rogozinskii window K2

6BR
2 are presented in Fig. 2.16. The

window ensures recognition of a signal with a minimum between peaks of ∼ 16 dB.
The Kravchenko–Gauss windows (Fig. 2.17) also provide a weak signal recognition,
and window K6G3 has small diffusion of spectral components, its minimum being
∼ 15 dB.

Fig. 2.8. Powerful signals with frequencies (a) 10 bin and (b) 10.5 bin.
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Fig. 2.9. The Hamming window.

Fig. 2.10. The Kravchenko windows (a) K4
2 and (b) K4

4 .

Fig. 2.11. The Kravchenko–Gauss windows (a) K2G2, (b) K2
2G2, and (c) K2G3.
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Fig. 2.12. The Kravchenko–Bernstein–Rogozinskii windows (a) K2BR
2, (b) K2

2BR, and (c)
K2

2BR
2.

Fig. 2.13. The Kravchenko–Gauss windows (a) K2
4G

2
2, (b) K

4
4G2, (c) K4G3, and (d) K2

4G3.
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Fig. 2.14. The Kravchenko–Bernstein–Rogozinskii windows (a) K2
4BR and (b) K2

4BR
2.

Fig. 2.15. The Kravchenko–Dolph–Chebyshev windows (a) K4C3 and (b) K4C3.5.

Fig. 2.16. The Kravchenko–Bernstein–Rogozinskii window K2
6BR

2.

2.10. Time-Domain Dilation of the New Synthesized Kravchenko
Windows

Figure 2.18 demonstrates the influence of the window’s time dilation w∗(t) = w (k · t)
on sidelobe levels and maximum transformation losses. The time dilation corresponds

to shortening the interval of definition for the window [a∗; b∗] =
1

k
[a; b], where k is the

scale factor and [a; b] is the interval of definition for window w(t). Here, the sidelobe
level increases and the transformation loss decreases proportionally. The same situation
is observed for other windows.

Numerical experiments and physical analysis of results have shown that the param-
eters of the new synthesized Kravchenko, Kravchenko–Gauss, Kravchenko–Bernstein–
Rogozinskii, and Kravchenko–Dolph–Chebyshev windows are comparable with those of
the classical windows and some of them are even better. These results are fundamental
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Fig. 2.17. The Kravchenko–Gauss windows (a) K2
6G

2
2, (b) K6G3, and (c) K2

6G3.

for the realization of digital spectral processing of multivariate signals in the Doppler
radar, synthetic-aperture radar, in problems of signal resolution and compression, com-
puter tomography and termography, and medical diagnostics.

Other examples of application of the new Kravchenko windows for detection of
numerous targets by radar are presented in the second part of this book.

Fig. 2.18. Maximum sidelobe level vs. maximum transformation loss for the K4
2 , K2G3, K

4
4 , and

K2
4G

2
2 windows with the support length reduced by 10 and 30%.
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Chapter 3

SYNTHESIS OF DIGITAL FILTERS ON THE BASIS

OF THE ATOMIC FUNCTIONS AND ITS APPLICATIONS

3.1. Synthesis of Digital Filters

3.1.1. Finite Impulse Response (FIR) filters. The atomic windows enable one to
improve the frequency response of digital FIR. Without loss of generality, let us consider
the synthesis of a low-pass filter (LPF) [1–3] whose ideal frequency response is

H0(ω) =

{
1, |ω| < ωc,
0, ωc < |ω| < π,

where ωc is the cutoff frequency. This response is unrealizable. The frequency response
of the FIR synthesized using the rectangular window has considerable ripples in the
vicinity of the cutoff frequency, the so-called Gibbs oscillations. This frequency response
can be smoothed using a window different from a rectangular one. In this case, the
FIR of the ideal filter is multiplied by a window weighting function. We compare FIRs
based on different windows using the following parameters: the passband ripple R (in
dB) and the stopband attenuation A (in dB). Figure 3.1 and Table 3.1 [4, 5] summarize
the results obtained for the classical and atomic windows. The cutoff, passband, and
stopband frequencies are assumed to be equal to π/2, 1.27, and 1.87, respectively.

Only the Hamming window exhibits a characteristic better than that of the atomic
windows under consideration. A FIR based on the window w2(x) has the characteristics
comparable with the filters based on the Hamming and Gaussian windows.

3.1.2. Infinite Impulse Response (IIR) filters. Consider the use of the AFs for
the synthesis of IIR filters. Here, we briefly describe this algorithm [2]. As is known,
the frequency response of an analog RF is

H(p) =
A(p)

B(p)
=

K−1∑

k=0

akp
k

M−1∑

k=0

bkp
k

, (3.1)

where p = jω and ω is the circular frequency. Expression (3.1) corresponds to a linear
continuous structure described by a linear differential equation with constant coefficients

M−1∑

k=0

bky
(k)(t) =

K−1∑

k=0

akx
(k)(t). (3.2)
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Fig. 3.1. Gain characteristics (left) and logarithmic gain characteristics (right) of the ideal FIR
(H0(ω) and the LPFs based on the Kravchenko–Rvachev windows w1 − w7 (H(ω)).
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Tab l e 3.1. Parameters of FIRs based on the known and Kravchenko–Rvachev windows.

Parameters, dB
Windows

R A

Well-known

Rectangular −0.42 −26.55

Bartlett −0.44 −26.11

Hamming 0.016 −56.24

Hanning 0.05 −44.54

Blackman −0.13 −36.41

Kaiser–Bessel (β = 3) −0.18 −33.68

Gauss (α = 6.25) −0.08 −41.04

Kravchenko–Rvachev

w1(x) 0.32 −28.51

w2(x) 0.05 −44.45

w3(x) −0.23 −31.48

w4(x) −0.19 −32.95

w5(x) −0.32 −28.61

w6(x) −0.27 −30.3

w7(x) −0.28 −29.78

This equation relates the output, y(t), and input, x(t), signals. The synthesis of a
digital IIR consists of constructing the transfer function

H(z) =
C(z)

D(z)
=

R−1∑

k=0

ckz
−k

1 +

Q−1∑

k=1

dkz
−k

(3.3)

corresponding to the linear difference equation

y[n] +

Q−1∑

k=1

dky[n− k] =
R−1∑

k=0

ckx[n− k]. (3.4)

Here, z = exp(j2πf/f0), f is the frequency, f0 is the sampling frequency, and x[n]
and y[n] are the samples of the input and output sequences. The algorithm involves a
discrete approximation of the derivatives providing a passage from (3.2) to (3.4). Within
the framework of the theory of finite difference schemes, the kth derivative of a discrete
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function is approximately estimated from the (k + 1)-th sample of the function. For
example,

dif 1(x) = x[n] − x[n− 1],

dif 2(x) = x[n+ 1] − 2x[n] + x[n− 1],
(3.4a)

In other words, the estimation is performed using a (k+1)-th order IIR with the
frequency response

Hk(jω) ∼ sink(ω/f0).

Hence, difference filters are formed by multiplying the ideal frequency response jω and
the Dirichlet frequency window

Wk(jω) =

[
sin(ω/f0)

ω/f0

]k
.

The rectangular window is not the best one, because it provides reasonable charac-
teristics only for the estimation of high-order derivatives. Therefore, it is necessary to
use the approximations of derivatives alternative to (3.4a).

Taking into account the properties of the Dirac function, we can represent the left-
hand side of (3.2) as the convolution

M−1∑

k=0

bky
(k)(t) = y(t) ∗

M−1∑

k=0

bkδ
(k)(t), (3.5)

where q is the sign of convolution. Since the derivatives of the Dirac function do not
form a realizable sequence of functions, this function should be replaced by a suitable
finite function h(t) with the spectrum well localized within the interval [–f0/2, f0/2].
These requirements are satisfied by the AFs whose derivatives can easily be estimated

using the equation Ly(x) =
M∑
m=1

cmy (ax− bm). Instead of (3.5), we obtain

M−1∑

k=0

bky
(k)(t) ≈ y(t) ∗

M−1∑

k=0

bkh
(k)(t),

or, in the discrete form,

M−1∑

k=0

bky
(k)(t) ≈

N−1∑

i=0

{
M−1∑

k=0

bkh
(k)[i]

}
y[n− i] =

N−1∑

i=0

{
M−1∑

k=0

bkh
(k)[i]

}
z−i. (3.6)

In a similar manner, one can modify the right-hand side of (3.2). The problem is to
choose an optimum digitization interval ∆ 6 f−1

0 so as to provide the approximation of
derivatives with a sufficient accuracy when the order of the filter is not very high. We
illustrate the algorithm by the following example.

Suppose that it is necessary to determine the coefficients of a digital recursive LPF
with periodic passband ripple and the following parameters: the maximum passband
nonuniformity of R = 0.1 dB, the maximum stopband attenuation of A = 30 dB, the
sampling frequency f0 = 12 kHz, the limiting passband frequency of f1 = 1 kHz, and
the limiting stopband frequency of f2 = 4 kHz. We choose the Chebyshev filter as an
analog prototype filter. According to the standard technique, we find the necessary order
(n = 3) and the transfer function of the analog filter

H(p) = 1.638 · 1

(0.969 + p)(1.690 + 0.969p+ p2)
.
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Thus, we obtain the following coefficients in (3.5): b0 = 1.638, a0 = 1.638, a1 =
= 2.629, a2 = 1.938, and a3 = 1. Applying a bilinear transformation to replace p by z,
we find the transfer function of the recursive LPF:

H1(z) = 0.018 · (1 + z−1)3

(1− 0.588z−1)(1− 1.273z−1 + 0.624z−2)
.

Now, let us synthesize a filter using the AFs. We set h(t) = fup 3(t) and use a
four-point approximation of derivatives. According to (3.6), we obtain the following
transfer function of the third-order recursive Chebyshev filter:

H2(z) =

3∑

k=0

{
3∑

i=0

bi2
ifup(i)

3

(
−3

2
+ k

)}
z−k

3∑

k=1

{
3∑

i=0

ai2
ifup(i)

3

(
−3

2
+ k

)}
z−k

=

=
5.686 · 10−3 + 0.097z−1 + 0.097z−2 + 5.686 · 10−3z−3

1.581− 3.004z−1 + 2.229z−2 − 0.601z−3

with b1 = b2 = b3 = 0. Figure 3.2 demonstrates the frequency responses obtained for
H1(z) and H2(z).

As compared to known frequency-conversion techniques, the AF method proposed
for the synthesis of digital filters provides a simple computational algorithm, which is
easy to implement.

Fig. 3.2. Frequency responses of the digital Chebyshev LPF synthesized using (solid line) the
bilinear transformation (H1) and (dashed line) AFs (H2).

3.2. Kravchenko–Rvachev Windows Used in Digital Radar

Frequency discriminators (FDs) refer to the basic components of digital range and
speed meters. After every probing session, the information about the lag of the received
signal and the Doppler frequency is stored in the memory unit. After that, the fast
Fourier transform (FFT) is applied to the data corresponding to a single range interval.
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Then, this procedure is performed for other range intervals, resulting in the spectrum of
the received signal. As applied to the automatic tracking system, the M -point FFT can
be treated as an algorithm of a multifilter spectrum analyzer with M frequency channels
called FFT filters [3, 5, 6].

For the FD algorithms, the initial data consist of complex amplitudes U
∗
Fp formed

by the FFT operation. Here, U is the amplitude of a complex digital signal and
∗
Fp is

the complex amplitude-frequency characteristic of the pth FFT filter. The processing
system is a linear or a square-law detector, depending on whether the absolute values

of amplitudes U
∗
Fp are used. When the weighting summation algorithm is applied, the

discrimination characteristic (DC) of an FD with a linear detector is

u(f) =

r∑

i=1

(2i− (r + 1))Fp(i)(f)

r∑

i=1

F(i)(f)

, (3.7)

where r is the number of the FD filters. For an FD with a square-law detector, one

must replace Fp(i)(f) by F 2
p(i)(f). The absolute values of the amplitude–frequency

characteristics of the FFT filters are

Fp(i)(f) = M

∣∣∣∣
sin [π (MfTd − p(i) + 1)]

π (MfTd − p(i) + 1)

∣∣∣∣ ,

where the number of a filter is p(i) =
1

2
(M − r(ν − 1)) + i, ν = 1 − r mod 2, and

T−1
d = fd is the sampling frequency. The exact value f0 of the transient frequency of the

input signal at which the FD DC vanishes is given by the formula f0 =
M − ν

2M
fd. It is

conventional to represent the DC in terms of relative frequency offsets fα with respect

to the transient frequency fα = M
(
2
f

fd
− 1
)

+ ν.

In this case,

Fp(i)(fα) = M

∣∣∣∣
sin [0,5π (fα + r + 1− 2i)]

0, 5π (fα + r + 1− 2i)

∣∣∣∣ . (3.8)

The substitution of (3.8) into (3.7) yields the relative DC u(fα). Formula (3.8)
corresponds to the FFT performed with the implicit use of the rectangular Dirichlet
window. Due to the high level of sidelobes in the spectrum of this window, the FD
DC is substantially irregular, which causes errors in direct frequency measurements.
Therefore, it is expedient to use other weighting windows, in particular, atomic windows,
whose advantage is that their Fourier transforms can be calculated by simple explicit
formulas. Figures 3.3 a, 3.3 b, and 3.3 c – 3.3 f display the relative DCs (r=6) for
the rectangular, Hamming, and Kravchenko–Rvachev (w1, w3, w5, and w7) windows,
respectively [7, 8]. The DCs for the windows w2, w4, and w6 are not shown in the
figures, because they are virtually identical to those for w1, w3, and w5, respectively.
One can see that the DC is smoothed and the maximum smoothness is observed for
the window w7. In addition, the weighting windows increase the linear section of the
characteristic, because this section corresponds to the frequency band of the main lobes
of the amplitude–frequency characteristic of an FFT filter. The best result is provided by
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w5. At the same time, the weighting windows different from a rectangular one slightly
decrease the signal-to-noise ratio, which is due to the expansion of the main lobe of the
window spectrum. Figures 3.4 a–3.4 f illustrate the use of the same windows in an FD
with a square-law detector and with the same number of filters.

Fig. 3.3. Relative DC of an FD with a linear detector for the FFT with (a) rectangular, (b)
Hamming, and Kravchenko–Rvachev windows (c) w1, (d) w3, (e) w5, and (f) w7.
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Fig. 3.4. Relative DC of an FD with a square-law detector for the FFT with (a) rectangular, (b)
Hamming, and Kravchenko–Rvachev windows (c) w1, (d) w3, (e) w5, and (f) w7.

3.3. The Use of the New Types of Windows in
Electroencephalography

Electroencephalograms (EEG) allow one to obtain the picture of the brain activity.
EEG analysis is used for separation of specific types of electric potentials and deter-
mining their localization in brain. During the clinical description of the EEG readings,

3 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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the specific morphological components are distinguished, namely, rhythms, criteria of
epileptimorphic activity, and temporal and topography parameters [9, 10].

Rhythms. The EEG rhythm is a definite type of electric activity corresponding to
the specific brain state and connected with cerebral mechanisms. Usually, the following
four types of rhythms of increasing frequency are used in clinical investigations: delta-,
theta-, alpha-, and beta-rhythms. Alpha-rhythm has the frequency of 8–13 Hz and
amplitude up to 100 µV and is basic for preliminary detection of deviations from the
normal state. It is registered for 85–95% of relaxed adults with closed eyes. Beta-

rhythm has the frequency of 14–40 Hz and amplitude up to 15 µV and is a leading
rhythm of the active state. Beta-rhythm is connected with somatic, sensor, and motor
brain mechanisms. It gives the response on moving activity or tactile stimulation.
Often, two ranges of beta-rhythms are distinguished, β1 and β2, with the frequencies
of 14–18 Hz and 18–40 Hz, respectively. Usually, beta-rhythm is weak (3–7 µV) and
is masked by noise and electromiograms (EMG). Slow rhythms, such as theta-rhythm

with the frequency of 4–6 Hz and delta-rhythm with the frequency of 0.5-3 Hz have the
amplitudes of 40–300 µV and, in normal stage, are typical for some sleep stages.

To investigate the use of the new weighting functions (windows), the following
signals were used: the standard signal xe(t) with the sampling frequency of 800 Hz,
and test signals x(t) and y(t) with the sampling frequency of 100 Hz. The interval of
measurements was equal to 0.5 s. In this case, the Gibbs effect of the power leakage
is observed, resulting in the increase of the main lobe widths and origination of the
parasitic periodic components of the form sin(x)/x for each spectral peak. This effect is
caused by the finite realization of a signal obtained by the use of a rectangular window.

EEG parameters. Using the DFT, expand original signals x(t), y(t), xe(t) into the
Fourier series

DFx(t) = a0 +
∑(n−1)/2

i=1
(ai cos (i · t) + bi sin (i · t)).

The amplitude of a signal is determined as A (ωi) =
√
a2i + b2i , and the phase-frequency

characteristic is calculated by the formula ϕ (ωi) = arctg
(
− bi
ai

)
. Values of the signal

average amplitude in the beta-range, Aβx =
1

n

ωβ∑
ω=ωα

Ax (ωi) are presented in Table 3.2.

To weaken the influence of the Gibbs effect, instead of the average value of the
amplitude, one can use its maximum value in the beta-range, determined as Aβxmax =
= max
ωi∈[ωα,ωβ ]

Ax (ωi).

Figures 3.5 and 3.6 illustrate the difference between the analyzed EEG signal
parameters ((a) the standard signal with frequency 800 Hz, (b) the test signal x(t), and
(c) the test signal y(t)) for the cases when the rectangular window and the KKB1 are
used. Figures 3.7 and 3.8 present frequency responses of the investigated processes,
namely, the spectra of the analyzed EEG signals (the standard signal with a frequency
of 800 Hz and the test signal x(t)) and cross-spectra of the processes x(t) and y(t).

Only some of the problems of digital signal processing on the basis of the AFs have
been considered. It should be noted that the new mathematical methods can be applied
effectively for processing of large arrays of digital information, for example, in such
areas as synthetic-aperture radar, television, radioastronomy, telemedicine, computer
thermography, etc. Considerable promises are offered by the perfection of digital
processing techniques using the wavelet analysis on the basis of the AFs.
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Tab l e 3.2. The ratio between average amplitudes of the beta-rhythm for signals x(t) and xe(t).

Windows Aβ
xe

for xe(t) Aβ
x for x(t) Aβ

x/A
β
xe

Rectangular 0.4521 0.7112 1.5805

Kravchenko–Bessel (ν = 0) 0.2283 0.3933 1.7495

Kravchenko–Rvachev (KR) 0.2294 0.3988 1.7669

Bernstein–Rogozinskii 0.2722 0.4866 1.8043

Hamming 0.2123 0.3853 1.8486

Kaiser 0.2036 0.3791 1.8918

Kravchenko–Bessel of the 1-st kind (ν = 0) (m) 0.2279 0.4457 1.9830

Kravchenko–Hamming (KH) 0.2072 0.4078 1.9925

Kravchenko–Kaiser (KK) 0.2166 0.4301 1.9972

Kravchenko–Hamming (KH1) 0.2221 0.4446 2.0091

Kravchenko-Kaiser (KK2) 0.2413 0.4838 2.0130

Kravchenko (K3) 0.2395 0.4811 2.0161

Kravchenko (K1) 0.2118 0.4240 2.0183

Kravchenko–Hamming (KH2) 0.2348 0.4728 2.0208

Kravchenko (K2) 0.2271 0.4584 2.0240

Kravchenko–Kaiser (KK1) 0.2292 0.4627 2.0248

Kravchenko–Bessel of the 1-st kind (ν = 0.5) (m) 0.3187 0.4179 1.3303

Кравченко–Bessel of the 1-st kind (ν = 1) (m) 0.1740 0.2518 1.4479

Кравченко–Bessel of the 1-st kind (ν = 0.5) 0.3776 0.5456 1.4483

Кравченко–Bessel of the 1-st kind (ν = 1) 0.4232 0.6763 1.5993

Fig. 3.5. EEG signals processed by the rectangular window: (a) the standard signal with
frequency 800 Hz, (b) the test signal x(t), and (c) the test signal y(t).

3*
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Fig. 3.6. EEG signals processed by the Kravchenko window KKB1: (a) standard signal with
frequency 800 Hz, (b) test signal x(t), and (c) test signal y(t).

Fig. 3.7. Spectra of EEG signals processed by the Kravchenko window KKB1: (a) standard signal
with frequency 800 Hz, (b) test signal x(t), and (c) test signal y(t).
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Fig. 3.8. Characteristics of investigated processes x(t) and y(t) using the Kravchenko window:
(a) cross-spectrum; (b) coherent gain.

3.4. Approximation of a Given Function by Entire Functions of
Exponential Type

One of the central problems in the theory of antenna synthesis is the possibility to
approximate a given radiation pattern (RP) by entire functions of exponential type, i.e.,
functions of the class Wσ [11]. Indeed, if a given RP belongs to this class, then the
synthesis problem has a unique solution. As is known [12], the required RPs are usually
determined by practice and do not belong to the class of such functions. In this case,
the synthesis problem does not have an exact solution and it is necessary to approximate
a given RP with a prescribed accuracy by functions of the class Wσ.

Setting of the Problem. The following method of approximation is proposed in [12].
A given RP is approximated by a polynomial Pk(z) of sufficiently high order. According
to the Weierstrass theorem, such a procedure can be realized with any accuracy. Then,
the obtained polynomial is multiplied by an auxiliary function Um(z) possessing the
following properties:

1) Um(z) belongs to the class Wσ;
2) On the real axis, the function Um(z) is an infinitesimal value of order o (1/zm) as

z → ∞, where m > k;
3) On the interval of definition of the RP, Um(z) tends to unity as m tends to

infinity, i.e., there exists such m that, for any ε1, |1− Um(z)| < ε1 in the domain
−L/λ 6 z 6 L/λ, where L is the antenna length and λ is the wavelength. The product
Pk(z)Um(z) belongs to the class Wσ, and therefore there exists an amplitude–phase
current distribution in the antenna aperture which provides the given RP. Indeed,
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since|R(z) − Pk(z)| < ε2, we have

|R(z) − Pk(z)Um(z)| 6 |R(z) −R(z)Um(z)|+
+ |R(z)Um(z) − Pk(z)Um(z)| < |R(z)| ε1 + |Um(z)| ε2. (3.9)

On the interval −L/λ 6 z 6 L/λ, conditions |R(z)| 6 1 and |Um(z)| 6 1 hold for any
m, therefore

|R(z) − Pk(z)Um(z)| 6 ε1 + ε2, m > k. (3.10)

Similar reasoning can also be applied to the case of trigonometric polynomials Tk(z)
used as approximating functions. The RPs obtained belong to the class Wσ and are
realizable and represented by the Kotelnikov series [12]:

Rs(z) =
∑

m

Rs (zm)S (z − zm), (3.11)

where

S(z) = sin (σz) /σz,

zn = πn/σ.

In [12], the Fourier transform of a cosine function to the power m was proposed to
be used as the auxiliary function Um(z):

Um(z) =
1

2π

π∫
−π

eizy
[

Γ2(m/2 + 1)

m!

(
2 cos

y

2

)m]
dy, (3.12)

where Γ (α) is the gamma-function. For odd m,

Um(z) =
sinπz

πz
m∏

p=1

(
1− z2

p2

) ; (3.13)

for even m,
Um(z) =

cosπz
m∏

p=1

(
1−

(
2z

2p + 1

)2) . (3.14)

Both the functions belong to the class Wπ. At point z = 0 they have unity maxima.
The first zero is located at the points z = m/2+ 1. At all points where z = n and n 6 m,
we have

Um(n) =
(m!)2

(m+ n)!(m− n)!
. (3.15)

At the points z = n with n > m, we have Um(n) = 0. The choice of the number m allows
the approximation with any accuracy on a given interval, so it is possible to approximate
the given RP with required accuracy (3.10). Note that, in practical calculations, the
application of the function Um(z) in the capacity of an auxiliary function is not always
effective. In the cases when the ratio L/λ is large, the order of a polynomial Pk(z) must
also be large but, since m > k, the function Um(z) beyond the interval L/λ 6 |z| 6 m
tends to zero slowly. This results in origination of sidelobes, which can be effectively
suppressed by the methods of the theory of atomic functions (AF).

Atomic Functions. As is known [13], there exists a large family of AFs. The simplest
of them is denoted by up (y).
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The Fourier transform of up (y) is

Up(z) =
1

2π

∞∫
−∞

eiyz up (y)dy =
∞∏

p=1

sin z2−p

z2−p . (3.16)

It was used in the capacity of an auxiliary function for approximation of a given RP [13].
The RP obtained by the approximation is minimal beyond the interval −L/λ 6 z 6

6 L/λ. In [13], the AF Ξn(y) was used for solving the synthesis problem. Its Fourier
transform is

Kn(z) =
∞∏

p=1

sin z(n+ 1)−p

z(n+ 1)−p . (3.17)

At m = 1, Ξ1(y) = up (y). We have the following approximations of functions Rs(z) and
corresponding current distributions fs(y).

А. Approximation by trigonometric polynomials

Rs(z) = Kn (αz)

β(1−α)/α∑

m=−β(1−α)/α

ame
−iβzm, (3.18)

fs(y) =

β(1−α)/α∑

m=−β(1−α)/α

amΞn
(
y − βm

α

)
. (3.19)

В. Approximation by translations of functions Kn(z)

Rs(z) =
∑

m

amKn (α (z − βm)), (3.20)

fs(z) = Ξn
(
z

α

)∑

m

ame
−iβym. (3.21)

С. Polynomial approximation

Rs(z) = Kn (αz)
k∑

m=0

amz
m, (3.22)

fs(y) = α
k∑

m=0

(−i/α)m amΞ(m)
n (y/α). (3.23)

The choice of the parameters α,β, and an of these functions is determined by approxi-
mation methods (mean-square, uniform, or point-wise) [13].

3.5. The Use of Weighting Windows Based on the AF in SAR
Digital Signal Processing

3.5.1. Introduction. The approaches to the synthesis of SAR digital signal pro-
cessing systems are distinguished by their goals (object recognition, mapping, humidity
investigation, etc.), physical interpretation of the processing procedure, mathematical
tools, and methods used [19]. Therefore, different optimum criteria are applied for
processing SAR signals, such as the Neumann–Pearson, maximum signal-to-noise ratio,
minimum mean-square error criteria, etc. However, to within a constant factor, in any
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of these approaches the optimal device must form a signal corresponding to a radar
image by the SAR signal processing procedure as

Ji(η) =

∣∣∣∣∣∣∣

T/2∫

−T/2

ξ̇i(t+ η)ḣ(t)dt

∣∣∣∣∣∣∣
, (3.24)

where Ji(η), ξ̇i(t), and ḣ(t) are the radar image signal, received signal, and support
function, respectively, and T is the time of the antenna aperture synthesis. The support
function, to within the initial phase, is a weighted function complex conjugate of the
reflected signal:

ḣ(t) = H(t) exp[jΦ(t)]. (3.25)

Here, H(t) is a real-valued weighting function and Φ(t) is the support function phase
variation law. If H(t) = 1, the SAR response to a single pointwise target has a high
level of sidelobes (−13 dB). Therefore, other weighting functions are popular in practice
(Gauss, Hamming, Kaiser, etc.) [20]. Here, application of the atomic functions (AF)
[21] for constructing support functions used in SAR is discussed [30]. The main
parameters of the new weighting windows are presented and compared with those of
well-known windows.

3.5.2. Setting of the Problem of SAR Signal Processing. Consider the case
when the antenna pattern axis is perpendicular to the line of the antenna phase center
straightforward movement or the trajectory of flight. The Earth’s surface is assumed
to be flat. Axis OX is directed along the trajectory of flight, axis OZ is perpendicular
to the Earth’s surface, and axis OY is located in the plane of the Earth’s surface,
perpendicular to axes OX and OZ. We do not consider signal refraction and distortion in
the troposphere, as well as other factors insignificant for studying main principles of the
SAR. Let us describe a radiated signal by the harmonic function u0 = U0 cos(ω0t+ ϕ0),
where U0, ω0, and ϕ0 are constants. The simplest model of the reflected signal is based
on the representation of the Earth’s surface by a continuous or discrete set of elementary
pointwise reflectors with different intensities. The reflected sensing signal corresponding
to each pointwise target is received by a SAR antenna with a delay equal to the time
required for the signal to propagate from the SAR antenna to the surface and back. The
model is assumed to be linear, and the principle of superposition of signals is valid here.
This allows us to simplify the finding of a complex object radar image.

Suppose that a pointwise target is situated at a point A(0, yi, 0) of the Earth’s surface.
The reflected signal has the form

ui(t) = UiG(t) cos[ω0(t− τi) + ϕ0 + ϕi], (3.26)

where Ui is the maximum amplitude of the signal, G(t) is a normalized function
characterizing the modulation of sensing and reflected signals during their transfer and
reception by an antenna pattern, and ϕi is the change of the signal phase caused by
reflection. In (3.26), τi is the time delay defined as τi = 2ri(t)/c, where c is the velocity

of light, ri(t) =
√
x2(t) + y2i + h20 is the distance to the target, x(t) = V t, V is the

speed, and h0 is the flight height. Hence, the expression for the reflected signal can be
rewritten as

ui(t) = UiG(t) cos[ω0t− ψr(t) + ϕ0 + ϕi], (3.27)

where ψr(t) = 2ri(t)ω0/c = 4πri(t)/λ.
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Here, the SAR wavelength is λ = 2πc/ω0. If L ≪ r0 = ri(0) =
√
y2i + h20 , then,

approximately, we can write

ri(t) ≈ r0 + V 2t2/(2r0), (3.28)

G(t) ≈ 1, and
ui(t) ≈ Ui cos[ω0t− 2πV 2t2/(λr0) + ψp], (3.29)

where ψp = ϕ0 + ϕi − 4πr0/λ is the unknown initial phase of the reflected signal.
To suppress the noise in signal processing, the complex-valued analytical signal ṡi(t)

is formed as ṡ(t) = ui(t) + iHi {ui(t)}, where Hi {·} denotes the Hilbert transform. The
equiphase and quadrature components of the reflected signal are determined as

uic(t) = Ui cos[−2πV 2t2/(λr0) + ψi]

and

uis(t) = Ui sin[−2πV 2t2/(λr0) + ψi].

(3.30)

Here, ψi = ϕi − 4πr0/λ is the unknown random phase of the complex-valued signal,
which is constant for the given target. So, the complex-valued envelope can be written
as follows:

ṡi(t) = uic(t) + iuis(t) = Ui exp[−i(ψr(t) − ϕi)]. (3.31)

The last expression determines the trajectory signal of a single pointwise target. As

it follows from (3.31), the signal ṡi(t) is modulated by the phase Φi(t) = 2πV 2t2/(λr0).
The real signal to be processed usually is a sum of the reflected signal and noise, i.e.,

ξ̇i(t) = ṡi(t) + ṅ(t). (3.32)

ṅ(t) is the complex-valued Gaussian white noise whose real and imaginary parts have
the normal distribution, a zero mean value, and a uniform spectral density on the whole
frequency axis. Let us consider the synthesis of a processing system allowing one to
extract useful information from reflected signals distorted by noise. As was mentioned
earlier, the optimal device should form a signal corresponding to a radar image, to within
a constant factor, by means of the SAR signal processing procedure (3.24):

Ji(η) = |J̇(η)| =

∣∣∣∣∣∣∣

T/2∫

−T/2

ξ̇i(t+ η)ḣ(t)dt

∣∣∣∣∣∣∣
,

where Ji(η) = Ji(χ/V ) is the radar image signal; J̇(η) is the signal at the output of
the processing system linear part; η and χ are the temporal and spatial shifts between
the received signal ξ̇i(t) and support function ḣ(t), respectively. The support function is
a weighted function that, to within the initial phase, is complex conjugate of reflected
signal (3.25): ḣ(t) = H(t) exp[jΦi(t)], where H(t) is the weighting function.

3.5.3. Weighting windows based on the atomic functions in SAR signal pro-
cessing. The use of weighting functions (windows) in the time domain influences
essentially the energy leakage effect. The effect of this function on the analysed finite
part of the signal is equivalent to the use of the rectangular window. This window is not
optimal in analysis of signals due to discontinuity at the ends of the segment processed.
A better weighting function must have zero values at both ends and vary monotonically
inside the region of the processed part of the signal. The use of windows different
from rectangular and smoothing discontinuities of the signal at the ends of the segment
allows one to decrease the sidelobe level but, at the same time, the main lobe extends
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and resolution is degraded. So, if signal spectral components close in the amplitudes are
situated both in the vicinity and far from the weak component, then windows with equal
sidelobe level should be chosen. If high resolution between close signal components
is needed and distant components are absent, then windows with a very narrow main
lobe and minimal amplitude of neighboring sidelobes are required. Signals with smooth
spectra do not require windows at all.

Here, the atomic windows will be taken as H(t). The following (M+1)-term
windows can be used [23–25]:

w̃(x) = w(x) +
M∑

k=1

ckw
(2k)(x), (3.33)

where w(x) is a single-term atomic window normalized and centered as follows: w(x)=0
for |x| >1, w(0)=1, and w(−x) = w(x). The optimal choice of undetermined coefficients
ck in (3.33) allows one to reduce essentially the sidelobe level. Here, we will use only
single- and two-term windows (M=1).

To compare different windows, the following system of parameters will be used: the
maximum sidelobe level, dB; half-power beamwidth, deg; the angular distance to the
first zero, deg; and the gain factor (aperture efficiency). Table 1 gives the important
characteristics of several classical distributions in comparison with those based on the
AFs. Here, l is the total length of the antenna aperture. As is seen from this table,
the atomic window 6 is analogous to triangle window 2, although their forms are quite
different. Windows 7, 8, and 12 are compatible with classical cosine windows 3 with
n=2, 3 and 4, respectively. As for window 10, it should be noted that, with respect to
the main characteristics, it is close to windows 4 and tends to window 1 as a→ ∞. The
asymptotic decay of sidelobes for all atomic windows is equal to infinity. The family of
atomic windows is very flexible and allows one to meet different requirements. Figure
1 shows the atomic windows and their power radiation patterns.

Recently a wide class of new windows based on combinations (products and convo-
lutions) of the AFs with classical functions was proposed by V. F. Kravchenko [27, 28].
Some of them possess extraordinary properties making them useful in different problems
of digital signal processing, including those connected with SAR.

As an example, Fig. 3.9 illustrates the real and imaginary parts of support functions
(left) based on the atomic windows along with the corresponding synthesized radiation
patterns (right). The time T of the synthesizing interval was equal to 3 sec. The
other parameters were as follows: h0 = 400 m, yi = 100 m, V = 220 km/h, and ω0 =
= 10π · 107 rad/sec.

So we may conclude that the properties of the atomic functions allow one to
synthesize weighting functions with good parameters for the use in SAR digital signal
processing. The results of numerical experiments prove the efficiency and flexibility of
the novel approach. The application of two-dimensional and multi-dimensional weighting
windows based on the AFs and R-functions [29] is also very promising for solving more
complicated problems of SAR signal processing.

3.6. Synthesis of Two-Dimensional Window Functions on the Basis
of Atomic Functions

Digital processing of multidimensional signals is one of the most promising directions
in the combined use of the R-functions and AFs. These functions can be used in
processing of two-dimensional signals in digital radar, synthesis of two-dimensional FIR
and IIR filters, etc.
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Tab l e 3.3. Classical and Kravchenko–Rvachev weighting windows.

Type of distribution Parameter
Half-power
beamwidth,

deg

Angular
distance to

first zero, deg

Maximum
sidelobe level,

dB

Gain
factor

Classical windows

rectangular – 50.8λ/l 57.3λ/l −13 1.000

1− |2x/l| – 73.4λ/l 114.6λ/l −26 0.750

cosn(πx/l)

n = 1 68.8λ/l 85.9λ/l −23 0.810

n = 2 83.2λ/l 114.6λ/l −32 0.667

n = 3 95.1λ/l 143.2λ/l −40 0.575

n = 4 110.6λ/l 171.9λ/l −48 0.515

∆ = 0.8 52.7λ/l 60.7λ/l −16 0.994

1− (1− ∆)(2x/l)2 ∆ = 0.5 55.6λ/l 65.3λ/l −17 0.970

∆ = 0 65.9λ/l 81.9λ/l −21 0.833

exp[−α(2x/l)2]
α = 2 66.5λ/l 71.0λ/l −31 0.811

α = 2.5 97.0λ/l 114.6λ/l −35 0.754

Kravchenko–Rvachev windows

up (2x/l) – 88.2λ/l 114.6λ/l −23 0.618

γ[ up (2x/l)+

+α up ′′(2x/l)]

α = 0.005 87.0λ/l 113.9λ/l −26 0.643

α = 0.01 81.4λ/l 114.6λ/l −32 0.667

α = 0.02 77.3λ/l 113.9λ/l −28 0.714

γ · fup 1(3x/l) – 100.8λ/l 171.9λ/l −37 0.537

γ[ fup 2(4x/l)+

+α fup ′′
2 (4x/l)]

α = 0.05 99.1λ/l 162.9λ/l −41 0.559

α = 0.1 86.9λ/l 115.1λ/l −26 0.639

γ · ha[2x/l(a− 1)]
a = 3 74.5λ/l 85.9λ/l −17 0.755

a = 5 64.2λ/l 71.6λ/l −15 0.858

γ[h3/2(4x/l)+

+αh′′
3/2(4x/l)]

α = 1/10 87.0λ/l 115.1λ/l −28 0.633

α = 1/12 91.8λ/l 126.1λ/l −32 0.607

α = 1/16 94.2λ/l 145.7λ/l −36 0.574

γ · Ξ2(2x/l) – 103.1λ/l 171.9λ/l −34 0.528

As a rule, two-dimensional FIR-filters are synthesized on the basis of two-
dimensional window functions defined on rectangular, circular, and hexagonal sup-
port domains (apertures). In the simplest case of a rectangular support area,
the two-dimensional weighting window is formed by means of a tensor product of
one-dimensional windows: w[n1,n2] = w1[n1] · w2[n2].

The most popular atomic weighting functions, which have been mentioned above, are
as follows:

w1(x) = up (x),
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w2(x) = up (x) + 0.01 up ′′(x),

w3(x) = fup 1(3x/2)/ fup 1(0),

w4(x) =
( fup 1(3x/2) + 0.0036 fup ′′

1 (3x/2))

( fup 1(0) + 0.0036 fup ′′
1 (0))

,

w5(x) = h3/2(x),

w6(x) = 1.0696(h3/2(x) + h′′3/2(x)/121),

w7(x) = Ξ2(x)/Ξ2(0).

The weighting functions satisfy the following normalizing conditions: w(x)=0 for
|x| >1, w(0)=1, and w(–x) = w(x). With the help of expression for the 2D filter
w[n1,n2] = w1[n1] · w2[n2], one can synthesize windows with rectangular apertures.

We will use the following system of parameters to compare characteristics of two-
dimensional windows in the plane ω2=0:

equivalent noise bandwidth

b1 = 4

1∫

−1

1∫

−1

w2(x, y)dxdy




1∫

−1

1∫

−1

w(x, y)dxdy




2
,

50% overlapping region correlation

b2 =

1∫

−1

1∫

0

w(x, y)w(x− 1, y)dxdy

1∫

−1

1∫

−1

w2(x, y)dxdy

· 100%,

spurious amplitude modulation (in decibels) b3 = −10 log

∣∣∣∣
W (π/2,0)

W (0, 0)

∣∣∣∣
2

,

where W (p,q) is the two-dimensional Fourier transform of the window function;
maximum conversion losses (in decibels) b4 = 10 log (b1) + b3;

maximum sidelobe level (in decibels) b5 = 10 log max
k

∣∣∣∣
W (uk, 0)

W (0,0)

∣∣∣∣
2

,

where {uk} are the local maximum points (excluding u0);
fsymptotic decay rate of side lobes (in decibels per octave) b6 =

= 10 log lim
u→∞

∣∣∣∣
W (2u, 0)

W (u, 0)

∣∣∣∣
2

;

window width at the six-decibel level b7=2u,

where u is the highest frequency such that 10 log

∣∣∣∣
W (0,0)

W (u, 0)

∣∣∣∣
2

= 6,

coherent gain b8 =
1

4

1∫
−1

1∫
−1

w(x, y)dxdy.

The same parameters can also be given for the plane ω1=0. Table 3.4 presents
calculated physical parameters for some two-dimensional Kravchenko–Rvachev windows
with a square support domain. As in the one-dimensional case, due to the infinite
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smoothness of the AFs, the side lobes of these windows are characterized by infinite
asymptotic decay rate.

The weighting window with circular a aperture is obtained by a rotation of a one-
dimensional weighting window around the axis of symmetry:

w[n1,n2] = w[
√
n2
1 + n2

2 ], (3.34)

where w(·) is a function of a one-dimensional continuous window. With the use of (3.34),
one can obtain two-dimensional discrete, both classic (Blackman, Hamming, Kaiser,
et.al.) and atomic (Kravchenko–Rvachev), windows possessing the circular symmetry.
Such symmetry is desirable, for example, in image processing when all directions in the
plane of the image are equivalent.

Tab l e 3.4. Main physical parameters of two-dimensional Kravchenko–Rvachev windows with
a square support domain.

Windows

Equiv-
alent
noise
band-
width,
bin

Over-
lapping
regions
corre-
lation
(50%
over-
lap),%

Spuri-
ous

ampli-
tude
modu-
lation,
dB

Maxi-
mum
con-

version
losses,
dB

Maxi-
mum
side-
lobe
level,
dB

Win-
dow
width
at the
six-

decibel
level,
bin

Coher-
ent
gain

b1 b2 b3 b4 b5 b7 b8

w1(x) 2.62 12 1.2 5.4 −23 2.1 0.25

w2(x) 2.25 17 1.4 4.9 −32 1.9 0.25

w3(x) 3.47 6 0.9 6.3 −37 2.4 0.15

w4(x) 3.27 7 1.1 6.3 −51 2.3 0.16

w5(x) 1.64 30 0.7 2.9 −36 2.9 0.27

w6(x) 1.5 32 0.8 2.6 −51 2.5 0.31

w7(x) 3.59 5 0.9 6.5 −34 2.4 0.14

Finally, the window with a hexagonal aperture is constructed on the basis of a one-
dimensional window w[n] by means of the tensor product

w[n1,n2] = w[n1] · w
[
n1 + n2

√
3

2

]
· w
[
n1 − n2

√
3

2

]
. (3.35)

Figures 3.9–3.10 present two-dimensional windows with circular and hexagonal support
areas, based on the AF up (x) as well as their logarithmic FRs, in dB. Figure 3.9 c is
an arbitrary normal section of the FR passing through the origin, and Figure. 3.10 c is
a section of the FR by the plane ω2 = 0.

Figures 3.11–3.12 demonstrate the FR of low-pass FIR-filters on rectangular, cir-
cular, and hexagonal support domains constructed on the basis of the one-dimensional
window up (x). The cutoff frequency ωñ = 0.5π; the boundary pass frequency
ωp = ωñ − 0.1π; and the boundary delay frequency ωd = ωñ + 0.1π are presented there.
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Fig. 3.9. (à) Two-dimensional window w[n1,n2] = up
[√

n2
1 + n2

2

]
with circular aperture, (b) its

logarithmic FR, and (c) a section of the FR by the plane ω2 = 0.

We assume that the ideal FR for a rectangular domain has the following form:

H0(ω1,ω2) =

{
1, |ω1| 6 ωc, |ω2| 6 ωc,
0, otherwise,

and those for circular and hexagonal domains are

H0(ω1,ω2) =

{
1,

√
ω2

1
+ ω2

2 6 ωc,

0, otherwise.

Unfortunately, the aforementioned approaches (tensor product and rotation) do not allow
us to synthesize two-dimensional filters with arbitrary support domains. This especially
concerns concave domains, for example, cross- or star-shaped. For such areas only
filters based on the simplest Dirichlet window can be constructed. Perhaps, due to
this difficulty, only three aforementioned types of support domains are used in practice.
Below we propose a technique based on the RFM for a synthesis of two-dimensional
windows on arbitrarily shaped domains.

In problems of digital filtration of two-dimensional signals, filters with a finite
impulse response (FIR-filters) are widely used. One of their advantages in comparison
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Fig. 3.10. (a) Two-dimensional window w[n1,n2] with hexagonal aperture, (b) its logarithmic FR,
and (c) a section of the FR by the plane ω2 = 0.

Fig. 3.11. (a)The FR of the low-pass FIR-filter constructed by the window w[n1,n2] = up [n1]×
×up [n2] and (b) the section of the FR by plane ω2 = 0.
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Fig. 3.12. The FR of the low-pass FIR-filter constructed by the window w[n1,n2] =

= up
[√

n2
1 + n2

2

]
and (b) the section of the FR by plane ω2 = 0.

Fig. 3.13. The FR of the low-pass FIR-filter constructed by the window w[n1,n2] =

= up [n1] · up
[

n1 + n2

√
3

2

]
· up

[
n1 − n2

√
3

2

]
and (b) the section of the FR by plane ω2 = 0.

with filters with infinite impulse response (IIR-filters) is the possibility of synthesizing
filters with a zero phase lag. This property is very important for various applications of
two-dimensional signal processing. In particular, filters with a nonzero phase lag can
cause damages of lines and borders on images being processed. Besides, the techniques
of two-dimensional IIR-filter synthesis are more complicated because of difficulties of
providing their stability.

3.7. Synthesis of Two-Dimensional FIR-Filters

A two-dimensional FIR-filter provides a zero phase lag if its frequency response is
real-valued, i.e., H(ω1,ω2) = H∗(ω1,ω2) or, if its impulse response is symmetric with
respect to the origin,

h[n1,n2] = h∗[−n1,−n2]. (3.36)

There are several methods for two-dimensional FIR-filter synthesis. Some of them
are the methods of weighting windows, frequency sampling, and frequency transforms.
Here, we will consider the method of weighting windows as most widely used in practice.
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According to it, the required two-dimensional filter frequency response H0(ω1,ω2) is
presented in the form of the Fourier series

H0(ω1,ω2) =
∞∑

n1=−∞

∞∑

n2=−∞

h0[n1,n2]e
−j(ω1n1+ω2n2) (3.37)

with the coefficients h0[n1,n2] determined by the expression

h0[n1,n2] =
1

4π2

π∫
−π

π∫
−π

H0(ω1,ω2)e
j(ω1n1+ω2n2)dω1dω2. (3.38)

Here, h0[n1,n2] is an infinite impulse response for a two-dimensional filter correspond-
ing to the required frequency response H0(ω1,ω2). For a realizable two-dimensional
FIR-filter, the bounds of summation in (3.37) must be limited. This deteriorates the
convergence of the truncated series (3.37) to the required frequency response at its points
of discontinuity (the Gibbs effect). To improve the convergence, we should multiply the
coefficients h0[n1,n2] by a proper two-dimensional weighting window function w[n1,n2],
i.e., we get the following coefficients:

h[n1,n2] = w[n1,n2] · h0[n1,n2]. (3.39)

For filters with a zero phase lag, the window function must satisfy the condition

w[n1,n2] = w∗[−n1,−n2]. (3.40)

The new two-dimensional windows proposed and justified in this work can be used
in problems of multidimensional signal processing in Doppler’s and synthetic-aperture
radar, for resolution and compression of signals, in telemedicine, mathematical modeling
of the heart generator, computer thermography and tomography, etc.
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Chapter 4

WAVELET SYSTEMS AND ATOMIC FUNCTIONS

4.1. Introduction

Wavelet systems (hereafter called W-systems) have become very popular now. They
are discussed in scientific journals and textbooks [1–4], in monographs [4–6], and in
hundreds of articles. Many reports at special conferences on the W-systems have been
made. These systems have found wide use in areas where solution by other methods is
especially difficult, such as mathematical analysis, theory of partial differential equations,
seismology, radio physics, music and speech analysis, and image processing. Suggestions
are being made that expansions in the W-systems will compete successfully with the
Fourier expansions and Fourier transforms and that the work of human auditory and
visual organs is based on the «wavelet» principle. The W-systems are as popular now as
splines in their time. It is sufficient to note that the report on the W-systems made by
I. Daubechies, the inventor of compactly supported W-systems, was among the several
plenary reports devoted to the deepest questions of pure mathematics at the International
Congress of Mathematicians (Zurich, 1994). This fact was unprecedented in forums of
such a kind (splines were not honored with such attention).

The way to wide and justified application of the W-systems has some obstacles.
The main one is a relatively awkward mathematical apparatus. Here, we present
the description of constructive methods for the simplest and, in our opinion, most
useful W-systems, analysis of their benefits and shortcomings, methods of improving
them, and also their comparison with other orthogonal systems. The main focus is
given to W-systems, their modifications, and methods of constructing them that are
investigated by the authors. Here, the commonly used ideology of wavelets as orthogonal
systems consisting of translations and dilations of one or more functions possessing
both spatial and frequency localization was used. To simplify the presentation, we will
restrict ourselves to one-dimensional W-systems. Multidimensional ones can be obtained
as products of one-dimensional W functions, although other methods of constructing
multidimensional W-system are also of great interest.

4.2. Basic Principles of Wavelet Analysis

The idea of the W-systems consists in the consideration of functional systems
generated by translations and dilations of some generative functions such that the
functions of the W-system along with their Fourier transforms are localized, to some
degree, in a finite domain. The coefficients of expansion of an arbitrary function into
these systems contain, in a sufficiently explicit form, information on the behavior of the
function and its instantaneous spectrum, i.e., the W-systems must realize a local Fourier
analysis (LFA). The most frequently considered orthogonal W-systems are constructed
by means of a proper choice of generative functions. The first variants of the W-systems
had one or two generative functions. Now it is common to use two generative functions
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(in the one-dimensional case), although a greater number of them should be taken in
order to provide a good expansion in the frequency domain when LFA is realized.

The main requirements to the W-systems are as follows: localization in the time
domain; localization in the frequency domain; good approximation properties sufficient
for the application using the specific W-system; smoothness, i.e., a sufficient continuous
differentiability; and the ease of calculation.

In its turn, each of these properties of the W-system has several gradations.
As for the localization, the W-system functions can be

1. decreasing as |x|−m if |x| → ∞ for some fixed m, where x is a spatial (temporal)
variable;

2. decreasing faster than |x|−m for all m as |x| → ∞, i.e., rapidly decreasing;
3. decreasing as e−α|x|, α > 0 if |x| → ∞, i.e., exponentially decreasing (exponential

localization);
4. equal to zero outside a finite interval, i.e., compactly supported.

In addition to the aforementioned classification, a more detailed quantitative classification
determining the localization is of practical interest. For example, we may say that the
function f(x) is δ-localized at the point x0 with degree ε if

x0+δ∫

x0−δ

|f(x)|2 dx

∞∫

−∞

|f(x)|2 dx
> 1− ε. (4.1)

In the qualitative sense, a compactly supported localization is better than an exponential
one. However, if we define the ε-support of a function f(x) as the set ε− supp f(x) =
= {x, |f(x) > ε|}, then the ε-support of an exponentially localized function can be shorter
than that of a compactly supported function.

As is known, the time-domain localization of the function and the frequency-domain
localization of its Fourier transform are opposite in some sense, especially when this
localization is evaluated qualitatively. Certainly, there exist rapidly decreasing functions
whose Fourier transforms are also rapidly decreasing. The necessary and sufficient
condition for this is that the function itself is of the class C∞, i.e., infinitely differ-
entiable. However, the Fourier transform of a rapidly decreasing C∞ function has a
small ε-support (when the ratio ε/‖f‖L2

is small). The Fourier transform of a compactly
supported function also cannot be compactly supported being an entire function of
exponential type.

The smoothness of the W-system is due to its the frequency-domain localization. So,
Y. Meyer’s W-systems have compactly supported Fourier transforms; therefore, they are
entire functions of exponential type. Functions of the Daubechies and the Stromberg–
Lemarie–Battle W-systems have only a finite number of continuous derivatives; hence,
their Fourier transforms decrease as |t|−m when t→ ∞ (t is an independent variable in
the frequency domain).

From the viewpoint of high resolution with respect to the frequency, a good
frequency-domain localization is requiered from functions of a W-system in order to
provide an effective estimation of instantaneous spectrum of the signal when the LFA is
realized.

A natural approach to this local Fourier analysis could be as follows. Let the function
ϕ(x) be nonnegative, equal to zero outside the interval [−1,1], close to unity when
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x ∈ [−1 + ε, 1− ε], and
∞∑

k=−∞

ϕ(x− k) ≡ 1, (4.2)

i.e., its translations form the partition of unity.
The following functions are taken as the LFA basic functions:

ϕn,k,r(x) = ϕ (2rx− k) exp (2πinx2rx) . (4.3)

In this connection, we should note D. Gabor’s proposal to use the system

gk(x) = exp
(
−(x− k)2/2 + ix

)
. (4.4)

The function exp
(
−x2

)
is not compactly supported but very rapidly decreasing. On the

other hand, the system gk(x) is invariant with respect to the Fourier transform.
The atomic function up (x) also can be taken as ϕ(x).
The nonorthogonality of such systems is a shortcoming of the approach described.

The Gabor system is not even minimal: the omission of one of the functions in the
Gabor system does not affect the completeness of the remaining system. In essence,
this approach is a Fourier analysis with the use of time-domain windows.

4.3. W-systems

An alternative approach is to use the W-systems. Usually, the W-systems are
introduced by means of multiresolution analysis. Let Ln, n = 0, 1, 2, . . ., be a sequence
of subspaces of L2(R)-space of functions square-integrable on the real axis R (or on any
translation-invariant space on R), so that the space Ln contains in Ln+1 (Ln ⊂ Ln+1).
Then, the term “nested subspaces” may be used. The space Ln is generated by

translations of functions ϕn,s(x), s = 1, 2, . . . ,mn, by the divisible steps h
(s)
n ; i.e.,

Ln = C1 Spanϕn,s
(
x− k h

(s)
n

)
, where C1 is the closure and Span denotes the linear

span (here usually m = 1).
Functions ϕn,s(x) must be localized to some extent with respect to temporal and

frequency variables; i.e., both ϕn,s(x) and their Fourier transforms must be concentrated
close to some points xn,s and tn,s, respectively. In this case, the localization with
respect to the spatial variable must increase as hn → 0 and n increases. A variant of
multiresolution analysis when n changes from −∞ to +∞ also exists. In that case, the
localization with respect to the frequency variable increases as hn → ∞ and n→ −∞.

Thus, functions from the space Ln have the form

f(x) =
∞∑

k=−∞

∞∑

s=1

ck,sϕn,s
(
x− kh(s)

n

)
, (4.5)

where
∞∫
−∞

|f(x)|2 < +∞, i.e.,

∞∑

k=−∞

∞∑

s=1

|ck,s|2 < +∞ if 0 < c <

∞∫
−∞

∣∣ϕn,s(x)2
∣∣ dx < C.

If ϕn,s(x) are orthonormal functions, then
∞∫
−∞

|ϕn,s(x)|2 dx = 1.
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It is also required that the closure of the union of Ln coincides with the whole space
L2(R):

C1

∞⋃

n=0

Ln = L2(R). (4.6)

Then, in each space Ln, one can find an orthogonal complement Wn = L⊥
n−1 for the

space Ln−1, i.e.,
∞∫
−∞

ψ(x)ϕ(x)dx = 0 (the bar corresponds to complex conjugation).

Thus, Ln = Ln−1 ⊕Wn; i.e., any element f(x) ∈ Ln is uniquely representable by the
sum of functions f1(x) ∈ Ln−1 and f2(x) ∈ Wn, where f1(x) and f2(x) are orthogonal.
Suppose also that W0 = L0.

For any function f1(x) ∈ L2(R), its orthogonal projection prnf(x) on the space
Ln is determined; i.e., the function f(x) − prnf(x) is orthogonal to prnf(x).It
is clear that prnf(x) = prn−1f(x) + prwn

f(x). According to condition (4.6),
lim
n→∞

‖f(x) − prnf(x)‖L2(R) = 0.

Hence, f(x) is uniquely representable in the form f(x) =
∞∑
n=0

wn(x), where functions

wn(x) ∈Wn are orthogonal.
Now, one should choose an orthogonal basis in each space Wn. This basis must

consist of translations of h
∗(s)
n , the specific functions providing the orthogonality of

µn,s(x) ∈ Wn, s = 1, . . . ,m∗
n, where h

∗(s)
n and m∗

n can be different from h
(s)
n and mn.

Then, we obtain the union of all functions µn,s
(
x− k h

∗(s)
n

)
, n = 0, 1, . . . ,m∗

n. The

complete orthogonal system is the required W-system. Any function f(x) from L2(R) is
uniquely representable as the sum of the series

f(x) =
∞∑

n=0

m∗

n∑

s=1

∞∑

k=−∞

cn,s,kµn,s
(
x− k h∗(s)n

)
,

where

cn,s,k =

∞∫

−∞

f(x)µn,s

(
x− k h∗(s)

n

)
dx

∞∫

−∞

|µn,s(x)|2 dx
.

The partial sum Sn(f) of this series belongs to the space Ln. It gives us
the smoothed picture of the signal f(x). The temporal resolution is enhanced and
low-frequency components increase as n increases. This expansion allows one to imple-
ment the signal analysis including the LFA, its synthesis, filtering of some frequency
components, and efficient coding.

Functions µn,s(x) must be chosen maximally localized with respect to the temporal
and frequency variables, whereas they often cannot be localized in space, in contrast to
the initial nonorthogonal functions ϕn,s(x). However, functions µn,s(x) are localized in
the frequency domain and provide better frequency resolution as compared to the initial
functions ϕn,s(x).

The aforementioned system of multiresolution analysis is satisfied by Mayer,
Stromberg, Lemarie–Battle, and Daubechies wavelets, i.e., the W-systems obtained
by means of orthogonalization in the set of spaces UPn generated by translations
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up (x− k 2−n). As described above, the construction of a W-system with the help of
multiresolution analysis consists of the following steps:

1. Choose a nested sequence of spaces Ln generated by translations of functions
localized both in time and in frequency domains.

2. Pass from spaces Ln to orthogonal spaces Wn, which means orthogonalization
between different levels or scales in the frequency domain; this corresponds to the
orthogonalization of different ranges (when hn = 2−n) from different octaves.

3. Orthogonalize functions from the same Wn (i.e., orthogonalize the functions whose
Fourier transforms are located in the same range and in the same octave).

Let us consider the first stage. The nested spaces Ln (Ln ⊂ Ln+1) generated by
translations of the same function ϕn(x) are not quite arbitrary. More exactly, the
generative functions ϕn(x) must be infinite convolutions of atomic lattice measures. This
means that the Fourier transform of the function ϕ̃m(x) is an infinite product of periodic
functions.

Thus, the Fourier transform of a B spline of order r generating Stromberg and
Lemarie–Battle W-systems is presented in the form

B̃r(t) =

(
sin t/2

t/2

)r+1

=
∞∏

k=1

(
cos

t

2k+1

)r+1

. (4.7)

The Fourier transform of up(x) is representable as F (t) =
∞∏
k=1

(
cos t/2k+1

)k
.

If each space Ln has several generative functions, then their Fourier transforms are
represented by means of infinite matrix products of periodic functions.

In the case of Daubechies W-system, the even generating function satisfies the
condition

ϕ̃0(t) =





1 inside
[
−2

3
π;

2

3
π
]
,

0 outside
[
−4

3
π;

4

3
π
]
.

(4.8)

If µ0(t) − 2π is a periodic expansion of the function ϕ̃0(t) from the interval [−π,π] onto

the whole real axis R, then ϕ̃0(t) =
∞∏
k=0

µ0

(
t 2−k

)
.

Therefore, if we use Mayer’s approach due to the choice of ϕ0(x) = ϕn (2nx) when the
function ϕ̃0(x) is arbitrary on the interval (2π/3, 4π/3), we obtain the nested sequence
of spaces Ln generated by translations ϕ0(2

nx− k); i.e., the condition Ln ⊂ Ln+1 is
fulfilled. This allows us to construct an orthogonal W-system as the final result.

To realize the second stage or to generate orthogonal spaces Wn corresponding to
different levels with respect to the spatial resolution and frequency ranges, we can
construct in a standard way an orthogonal basis consisting of translations in the space
Ln. Further, we should orthogonally project generative functions of the space Ln+1 onto
the space Ln by dividing them into projections with respect to the orthogonal basis of
translations in Ln. Then, the difference between generative functions for spaces Ln+1

and their projections will form generative functions for spaces Wn. In specific situations,
we can solve the problem of constructing spaces Wn more easily by using finite sums
instead of series.

4.4. Examples of W-systems

Let us consider concrete examples. In regard to the W-systems of the first type, let
us turn to spline W-systems which were the first historically. As the space Ln, we will
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take the space of polynomial splines of degree r with defect d defined on the uniform
mesh khn, where the ratio hn/hn+1 must be integer for condition (i) to be satisfied, i.e.,
Ln ⊂ Ln+1. As a rule, hn = 2−n. This means that a function f(x) ∈ Ln is an algebraic
polynomial of order no greater than r on each interval (khn, (k + 1)hn); moreover, f(x)
has (r − d) continuous derivatives; i.e., polynomials on neighboring intervals are such
that their derivatives up to the order (r − d) are equal at the boundary points of the
intervals. Splines of zero defect are algebraic polynomials. We may omit the case of

d = 0, because the condition
∞∫
−∞

|f(x)|2 dx < +∞ is required. Splines of defect 1 are

also called natural splines.
Assume that r = 0, d = 1, hn = 2−n, n = 0, 1, . . .. Then, Ln is a space of piecewise

constant functions possibly having jumps at the points k 2−n. The space Ln is generated
by the functions ϕn (x− 2nk), where

ϕn(x) =

{
1, if 0 6 x < 2−n,
0, if 0 < x or x > 2−n.

(4.9)

In this case, the functions ϕn (x− 2nk1) and ϕn (x− 2nk2) are orthogonal when k1 6= k2.
To construct the space Wn+1, we project (orthogonally) the function ϕn+1(x) onto
ϕn (x− 2nk). The only function different from zero is ϕn+1(x) = ϕn(x)/2. Therefore,
an orthogonal complement Wn+1 for the space Ln in Ln+1 is generated by a translation
ψn+1 (x− 2−n) of the function

ψn+1(x) = ϕn+1(x) − ϕn(x)/2 =
(
ϕn+1(x) − ϕn

(
x− 2−n−1

))
/2, (4.10)

because ϕn(x) = ϕn+1(x) + ϕn+1

(
x− 2−n−1

)
.

Therefore, the orthogonal basis in the space W0 = L0 consists of functions ϕ0(x− k)
and, in the spaces Wn (n > 1), of functions

ψ1(x) = [ϕ0(x) + ϕ0(x− 1/2)]/2,

ψn
(
x− k 2−n−1

)
= ψ1

(
2n−1x− k

)
.

(4.11)

Thus, the W-system is constructed. Note that it is generated by translations and dilations
of two functions ϕ0(x) and ψ1(x) (father wavelet and mother wavelet). In this case, both
functions ϕ0(x− k) and functions ψn (x− k2−n) were found to be orthogonal; therefore,
additional orthogonalization in spaces Wn is not required. The constructed W-system is
a classical Haar system. Usually, the classical system

hn,k(x) = 2n/2+1ψ0 (2nx− k) , n > 1,

h0,k(x) = ϕ0(x− k)
(4.12)

is considered.
Denote this system by WS0. It is localized optimally in the time domain but, in

the frequency domain, its localization is not so good. In the first place, the Fourier
transforms of functions from WS0 decrease with the rate as |t|−1 → ∞. The function
ϕ0(x) is the simplest triangular window, but its shortcomings are well-known. Secondly,
if we split the frequency domain into the octaves Tn = 2nπ 6 t 6 2n+1π, then each
octave will contain, in a certain sense, only Fourier transforms for functions of WS0

relating to the level n of the form ψ0(2
nx− k) , i.e., translations of one function ψ0(2

nx),
differing from one anotherin in the absolute value with the factor exp (ik t). Therefore,
it is difficult to predetermine immediately the behavior of an «instantaneous spectrum»
at a presupposed point x0 and in a subinterval of the octave Tn using the magnitude
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of Fourier–Haar coefficients αn,k =
∞∫
−∞

f(x)hn,k(x)dx for the function f(x). Further

transformations of these coefficients are required.
As is well known, in the space of piecewise constant functions defined on a uniform

mesh, there exists another orthogonal basis different from the orthogonal Haar basis,
possessing the ideal spatial (temporal) localization. It is the Walsh basis, which is more
popular in signal processing. The Walsh functions are not localized in the time domain,
but they are well localized in the frequency domain. Therefore, in signal processing with
the use of the W-systems, one should turn to hybrid W-systems obtained by the use of
local Walsh transformations for the Haar system, in particular, when it is required to
obtain information on an instantaneous spectrum distribution with respect to different
ranges of a single octave (digital music and speech processing: in devices transforming
phonograms into notes and text).

In the simplest case, instead of using the Haar system, one can replace each pair of
functions hn,2k−1(x) and hn,2k(x) by the following pair:

w1
n,k(x) = (hn,2k−1(x) + hn,2k(x))/

√
2 ,

w2
n,k(x) = (hn,2k−1(x) − hn,2k(x))/

√
2 .

(4.13)

Here, the spatial resolution decreases by a factor of two, while the frequency resolution
is doubled inside the octave. When local Fourier analysis is realized, it becomes possible
to distinguish high and low pitches inside a single octave.

Some investigators have composed libraries of W-systems with respect to the required
number of pitches distinguishable inside a single octave [5].

The shortcoming of the WS0 system is that piecewise constant functions are not best
suited for approximation of smooth functions. If the signal under processing is smooth,
then the use of smoother W-systems probably allows one to obtain better quality for the
same number of levels in multiresolution analysis or to use a fewer number of levels to
provide the required quality. In other words, if the frequency of the signal to be processed

implies that the difference ∆xk = xk+1 − xk is small as compared with xk

∣∣∣∆xk

xk

∣∣∣≪ 1,

then the appropriateness of using smoother W-systems should be considered.
Another, not so trivial example of a W-system allowing us to observe the details of

constructing a spline W-system (and also atomic W-systems) is the system WS1 obtained
with r = 1 and d = 1 for the same mesh of width hn = 2−n. In this case, the splines
are continuous polygonal lines (piecewise linear functions). The space L0 is generated
by the translations ϕ0(x− k) of a compactly supported function (triangular window)

ϕ0(x) =

{
1− |x| , |x| 6 1,
0, |x| > 1,

(4.14)

and the space Ln for n > 1 is generated by the translations ϕn (x− k2−n) , where ϕn(x)
is a compression of the function ϕ0(x): ϕn(x) = ϕ0(2

nx).
This implies that, for constructing orthogonal complements Wn for Ln−1 in Ln, it is

sufficient to find the function ψ0(x) in the form

Ψ0(x) =
M2∑

j=M1

cjϕ0(x− j), (4.15)

which is orthogonal to all the functions

ϕ (x/2− k) . (4.16)
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It is sufficient to take µ1 = −3 and µ2 = 1 and consider ψ0(x) in the form

ψ0(x) = αϕ0(x+ 3) + βϕ0(x+ 2) + γϕ0(x+ 1) + βϕ0(x) + αϕ0(x− 1). (4.17)

Then, the orthogonality of ψ0(x) to ϕ0(x/2 + 2) and ϕ0(x/2 + 1) must be ensured,
because its orthogonality to ϕ0(x/2) and ϕ0(x/2− 1) follows from the symmetry and the
orthogonality of ψ0(x) to other functions ϕ0(x/2 + k) is fulfilled automatically because
ψ0(x)ϕ0(x/2− k) ≡ 0.

After computations we obtain

ψ0(x) = ϕ0(x+ 3) + 6ϕ0(x+ 2) + 10ϕ0(x+ 1) − 6ϕ0(x) + ϕ0(x− 1). (4.18)

4.5. Methods for Constructing Orthogonal Bases

Thus, the orthogonal spaces Wn have been constructed. Now, in spaces W0 = L0

and Wn, n > 1, we must construct orthogonal bases consisting of translations of some
generative functions µ0(x) for W0 and νn(x) = ν0(2

nx), n > 1, of the form µ(x − k),
νn
(
x− k2−n+1

)
. To do this, it is necessary to consider methods for constructing

orthogonal bases consisting of translations of a single function in spaces generated by
translations of a single function (nonorthogonal).

Let the space L be generated by translations ϕ0(x − k) of a function ϕ(x). It is
necessary to find the function µ(x) such that their translations µ(x− k) are orthogonal
and generate L.

Firstly, let us consider the case of a compactly supported function ϕ(x) vanishing
outside the interval [−a, a].

Assume that aik =
∞∫
−∞

ϕ(x− i)ϕ(x− k)dx. Then, aik = aki (in the case of a complex-

valued ϕ(x)), aik =
∞∫
−∞

ϕ(x − i)ϕ(x− i)dx, and aik = aik. Note that aik = ai−k. The

function µ(x) can be presented in the form

µ(x) =
∞∑

l=−∞

xlϕ(x− l), with

∞∑

l=−∞

x2l < +∞.

Then, the orthogonality conditions give us the system of equations

∞∑

i,k=−∞

ai−kxixk+s =

{
0 if s 6= 0,
1 if s = 0.

(4.19)

Compactness of the function ϕ(x) yields the coefficients at = 0 when |t| > M , where
M = [2a]. Then, system (4.19) can be rewritten in the form

M∑

t=−M

at

∞∑

i=−∞

xixi−t−s =

{
0 if s 6= 0,
1 if s = 0.

Suppose that

yk =
∞∑

i=−∞

xixi−k.
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If yk = y−k, we obtain the system

M∑

t=−M

atyt+s =

{
0 if s 6= 0,
1 if s = 0.

(4.20)

Its solution such that
∞∑

k=−∞
y2k < +∞ can be obtained in the form

yk =
M∑

l=1

clλ
|k|
l , (4.21)

where λ1,λ2, . . . ,λM are the roots of the characteristic equation

2M∑

s=0

aS−Mλ
s = 0, (4.22)

such that |λl| < 1, l = 1, 2, . . . ,M − 1.
Now, we can find coefficients xk from the system

∞∑

i=−∞

xixi−k = yk (4.23)

either in the form

xi =





M∑
l=1

dlλil if i > 0,

0 if i < 0,

(4.24)

(for the right-hand solution) or as

xi =





M∑
l=1

dlλ
−i
l if i > 0,

0 if i < 0,

(4.25)

(for the left-hand solution).
Let apply this technique in the case of spaces of polygonal lines.
Firstly, consider the construction of an orthogonal basis in the space L0. In this

case, a1 = a−1 = 1/6, a0 = 2/3, and ak = 0 when |k| > 1.
If we multiply the function ϕ(x) by 61/2, we can further assume that a0 = 4, a1 = 1,

and a±1 = 1.
The characteristic equation in this case has the form

λ2 + 4λ+ 1 = 0.

Its root λ1 = −2 +
√
3 has a modulus less than 1, and, correspondingly,

yk =
(
−2 +

√
3
)−|k|

.

The coefficients xi are

xi =

{ (
c
(
−2 +

√
3
)i
1

)
if i > 0,

0 if i > 0.
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Substituting xi into the equation
∞∑

i=−∞
xixi−k = yk, we obtain

∞∑

i=−∞

xixi−k =





∞∑
i>k

c2λ2i−k1 =
c2λk

1

1− λ2
1

= λk1 for k > 0,

∞∑
i=0

c2λ2i−k1 =
c2λ−k

1

1− λ2
1

= λ−k1 .
(4.26)

It follows that c =
√
1− λ21 =

√
4
√
3 − 6 .

Thus,

xi =

{ (
−2 +

√
3
)i

if i > 0,
0 if i < 0,

(4.27)

and

µ(x) =
∞∑

i=0

(
−2 +

√
3
)i

√
4
√
3 − 6

ϕ0(x− i).

This is a right-hand wavelet. A left-hand wavelet has the form

µ(x) =
0∑

i=−∞

(
−2 +

√
3
)−i

√
4
√
3 − 6

ϕ0(x− i).

Now, let us turn to the construction of orthogonal bases consisting of transla-
tions ν

(
x− k2−n+1

)
of functions the νn(x)in spaces Wn when n > 1.

It is sufficient to find a function ν(x) in the form

ν(x) =
∞∑

l=−∞

xlψ(x− 2l),
∞∑

l=−∞

x2l < +∞, (4.28)

such that its translations ν (x− 2k1) and ν (x− 2k2) for k1 6= k2 are orthogonal. Then,
one can assume νn(x) = νn (x2n).

Applying the aforementioned approach with the function
√
3 (ψ(x))/2 instead of ψ(x),

we obtain a0 = 54, a±1 = 10, a−1 = 10, a±2 = −1, and ak = 0 at |k| > 2.
Here, the characteristic equation is written as

λ4 − 10λ3 − 54λ2 − 10λ+ 1 = 0, (4.29)

the absolute values of its roots are less than unity and equal to λ1 = 7− 4
√
3 , λ2 = −

−2 +
√
3 .

Substituting (4.21) into (4.20), we obtain the following system in order to find c1
and c2:

54(c1 + c2) + 20(c1λ1 + c2λ2) − 2
(
c1λ

2
1 + c2λ

2
2

)
= 1,

10(c1 + c2) + 53(c1λ1 + c2λ2) + 10
(
c1λ

2
1 + c2λ

2
2

)
−
(
c1λ

3
1 + c2λ

3
2

)
= 0.

This implies that

c1
(
54 + 20λ1 − 2λ21

)
+ c2

(
54 + 20λ2 − 2λ22

)
= 1,

c1
(
10 + 53λ1 + 10λ21 − λ31

)
+ c2

(
10 + 53λ2 + 10λ22 − λ32

)
= 0
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and
c1 =

(
10 + 53λ2 + 10λ22 − λ32

)
/∆,

c2 =
(
10 + 53λ1 + 10λ21 − λ31

)
/∆,

∆ =
(
54 + 20λ1 − 2λ21

) (
10 + 53λ2 + 10λ22 − λ32

)
−

−
(
54 + 20λ2 − 2λ22

) (
10 + 53λ1 + 10λ21 − λ31

)
6= 0.

(4.30)

The coefficients xk are obtained in the form

xk =

{
d1λk1 + d2λ

k
2 , k > 0,

0, k < 0.

Here, we can write the following system for d1 and d2:




d21

1− λ2
1

+
d1d2

1− λ1λ2

= c1,

d22

1− λ2
2

+
d1d2

1− λ1λ2

= c2.
(4.31)

This, in turn, can be reduced to the biquadratic equation

d41


 1

1− λ2
1

− (1− λ1λ2)
2

(
1− λ2

1

)2(
1− λ2

2

)


+

+ d21


 2(1− λ1λ2)

2

(
1− λ2

1

) (
1− λ2

2

) − (c1 − c2)


+

c21(1− λ1λ2)
2

1− λ2
2

= 0. (4.32)

We obtain a right-hand wavelet vr(x). To obtain a left-hand wavelet vl(x), we use

xk =

{
d1λ

−k
1 + d2λ

−k
2 , k > 0,

0, k < 0,

or assume vl(x) = vr(−x).
There is another method based on the use of the Fourier transform to find an

orthogonal basis consisting of translations of a certain function µ(x) in the space L
generated by nonorthogonal translations of the function ϕ(x).

Let ϕ̃(t) be the Fourier transform of the function ϕ(x) and µ̃(t) be the Fourier

transform of the function µ(x). Therefore, if µ(x) =
∞∑

l=−∞
xlϕ(x− l),

∞∑
l=−∞

x2l < +∞,

then

µ̃(t) = ϕ̃(t)
∞∑

l=−∞

xle
ilt = b(t)ϕ̃(t), (4.33)

where b(t) =
∞∑

l=−∞

xleilt ∈ L2(R).

The orthogonality condition for functions µ(x − k) and µ(x − m), when k 6= m,
implies that

∞∫
−∞

|µ̃(t)|2 ei(k−m)tdt for k 6= m, (4.34)
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or, taking into account the 2π-periodicity of the function exp (i(k −m)t),

π∫
−π

∞∑

s=−∞

ei(k−m)t |µ̃ (t− 2πs)|2dt = 0, when k 6= m. (4.35)

Here,
∞∑

s=−∞
|µ̃ (t− 2πs)|2 = |b(t)|2

∞∑
s=−∞

|ϕ̃ (t− 2πs)|2 due to the 2π-periodicity of

the function b(t).
From (4.35) it follows that

|b(t)|2
∞∑

s=−∞

|ϕ̃ (t− 2πs)|2 ≡ A 6= 0. (4.36)

If we assume that A = 1, then |b(t)|2 = 1/Φ(t), where

Φ(t) =
∞∑

s=−∞

|ϕ̃ (t− 2πs)|2.

The function Φ(t) > 0 has a period 2π.
If Φ(t) > 0 and b(t) = 1/

√
Φ (t) , then the coefficients x can be found by means of

the Fourier-integral expansion of b(t) as

xl =
1

2π

π∫
−π

b(t)eiltdt.

In particular, if ϕ(x) is even, then Φ(t) is even too. In this case, xl =

=
1

2π

π∫
−π

b(t) cos lt dt =
1

π

π∫
0

B(t) cos lt dt. Here, the wavelet function µ(x) is also even in

contrast to the earlier constructed right-hand and left-hand W-functions that are equal
to zero on the half-line x < 1 or x > −1.

In the case of a polygonal line space L0, ϕ̃0(t) =

(
sin t/2

t/2

)2

and function Φ(t) has

the form

Φ(t) = sin4 t

2

∞∑

s=−∞

1

(t/2− 2sπ)2
=

2 + cos t

3
. (4.37)

For the even W-function, we have

xl =
1

6π

π∫
−π

cos lt√
2 + cos t

dt =
1

3
√
2π

π∫

0

cos lt
(
1 +

1

2
cos t

)−1/2

dt,

which implies that

xl =
1

3
√
2π

π∫

0

cos lt

(
1 +

∞∑

k=1

(−1)k(2k − 1)!!

k!22k
cosk t

)−1/2

dt.

Taking into account the property

cosk t = (1/2)k−1 (cos kx+ c1n cos(k − 2)x+ c2n cos(k − 4)x+ . . .
)



96 Ch. 4. Wavelet Systems and Atomic Functions

and the orthogonality of cosnx, we obtain

xl =
1

12
√
2

∞∑

k=l

(−1)k(2k − 1)!!

l!(k − l)!23k
. (4.38)

We can also proceed in the following way. The positive trigonometric polynomial Φ(t)
is representable in the form

Φ(t) = P (t)P (t) = |P (t)|2 ,
where P (t) is a complex-valued trigonometric polynomial. Suppose that

P (t) =

√
2 +

√
3
(
1− λ1e

it
)
,

where λ1 = −2 +
√
3 .

Then
b(t) = 1/P (t),

when

b(t) =
1√

2 +
√
3

· 1

1− λ1e
it =

1√
2 +

√
3

∞∑

l=0

λleilt,

i.e., xl =
λl

√
2 +

√
3

for l > 0 and xl = 0 for l < 0. It is clear that we can take

P (t) =

√
2 +

√
3
(
1− λ1e

−it
)

(4.39)

to have

xl =

{
λ−l1 for l 6 0,
0 for l > 0.

At last, we have obtained the right-hand and left-hand wavelets with the help of the
Fourier transform.

Which functions are better in practice: symmetric W-functions or one-sided ones?
Which of the methods of obtaining them is simpler? We leave these questions to the
reader’s judgement.

The function v(x) whose compressed translations generate an orthogonal basis in
spacesWn for n > 1 also can be constructed in a similar way. In this case, one can obtain
both symmetric and one-sided W-functions. Note that the constructed W-functions have
an exponential rate of decay as |t| → ∞ (one-sided functions even equal zero on the
half-line). In the nonsymmetric case, the rate of decay is determined by the root of
characteristic equation (whose modulus is less than unity) that is maximal with respect
to tha absolute value: λ1 = −2 +

√
3 = −0.2679.

In the symmetric case, the integrals 1/2π
π∫
−π

1/
√

Φ(t) cos lt dt still must be calcu-

lated. However, since the function 1/
√

Φ(t) is analytic, they must decrease exponen-
tially.

A W-system constructed of first-order splines is called a WS1 system. In reality,
depending on the choice of either one-sided or symmetric W-functions, we deal with
different WS1 systems. The WS1 system is the simplest example of the Stromberg and
Battle–Lemarie W-systems. Functions of a WS1 system are localized in the frequency

domain with the decrease rate of |t|−2
as |t| → ∞ and, in the time domain, provide us an
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approximation error no better than ch2, where h is the mesh width of a polygonal line.
As we can see, even the construction of this simplest W-system is more complicated
than the construction of the Haar system.

In the symmetric case, the Fourier transform of the function v(x) whose compressed
translations v (2nx− 2k) form an orthogonal basis in the space Wn can be represented
as

ṽ(t) = ϕ̃0(t)Q(t) =

(
sin t/2

t/2

)2

Q(t),

where

Q(t) =
cos2 t− 3 cos t+ 2√
14 + 5 cos 2t− cos2 2t

. (4.40)

In the nonsymmetric case,

ṽ(t) =

(
sin t/2

t/2

)2
cos2 t− 3 cos t+ 2

P (t)
. (4.41)

Here, P (t) is an arbitrary trigonometric polynomial (more precisely, a polynomial with
respect to exp(i2t) and exp(−i2t)) such that

P (t)P (t) = |P (t)|2 = 14 + 5 cos 2t− cos2 2t.

Therefore, in the symmetric case,

v(x) =
∞∑

l=−∞

xlϕ0(x− l), (4.42)

where

x(l) =
1

2π

π∫
−π

cos2 t− 3 cos t+ 2√
14 + 5 cos 2t− cos2 2t

cos lt dt,

and, in the nonsymmetric case,

x(l) =
1

2π

π∫
−π

cos2 t− 3 cos t+ 2

P (t)
e−iltdt, (4.43)

where P (t) can be taken in the form

P (t) = α
(
1−

(√
3 − 2

)
ei2t
)(

1−
(
7− 4

√
3
)
ei2t
)
,

α =
(
3
√
6 + 5

√
2
)
/4.

In order to calculate (4.43), we represent 1/P (t) as

1

P (t)
=

1

a





(
3 +

√
3
)
/6

1−
(√

3 − 2
)
ei2t

+

(
2−

√
3
)
/
(
3−

√
3
)

1−
(
7− 4

√
3
)
ei2t



 . (4.44)

4 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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In the symmetric case, for k > 0,

x2k =
1

a

(
3+

√
3

6

(
2
(√

3−2
)k

+
1

2

(√
3−2

)k−1

+
1

2

(√
3−2

)k+1
))

+

+
1

a

(
2−

√
3

3−
√
3

(
2
(
7−4

√
3
)k

+
1

2

(
7−4

√
3
)k−1

+
(
7−4

√
3
)k+1

))
=

=
1

a

2−
√
3

3−
√
3

(
7−4

√
3
)k−1 (

63−36
√
3
)
.

x2k+1 =
1

a

(
−3−

√
3

2

(√
3 − 2

)k (√
3 − 1

)
−

−2−
√
3

3−
√
3
3
(
7− 4

√
3
)k (

8− 4
√
3
))

. (4.45)

To calculate xk in the symmetric case, we use the formula

1√
14 + 5 cos 2t− cos2 2t

=
1√
14

∞∑

k=0

(−1)k(2k − 1)!!

k!2k
×

×
(

cos 2t

7

)2 ∞∑

s=0

(−1)s(2s− 1)!!

s!2s

(
cos 2t

2

)s
, (4.46)

which, being substituted into (4.42), will allow us to express xk in the form of a series.

4.6. Wavelets based on Hermitian Splines

The systems designed in the previous, naturally, have a low frequency resolution
for evaluating the instantaneous spectrum in the LFA. Only one function of the W-
system concentrated in the vicinity of a fixed point x0 in the time domain substantially
contributes in each octave of the frequency domain. If we want to have a W-system
whose expansion coefficients for a musical signal allow us to obtain immediately the
score of this signal, then the W-system must have at least twelve functions concentrated
in the vicinity of the given point in the time domain. These functions must have
their Fourier transforms situated mainly inside one octave and in different places. In
order to reconstruct the score for recording of a symphonic orchestra, a more flexible
W-system is necessary. The same can be said about W-systems used for the color
image analysis. Thus, the classical W-systems generated by translations of one single
function compressed by a factor of 2n are not suitable for these purposes (without
proper modifications). If, instead of a compression coefficient of 2, we use a compression
coefficient (1 + 1/m) or 21/m, the situation will be improved. As is known, human ear
and brain can perceive identically a melody that is raised or lowered not only by a whole
octave but also by several tones. Unfortunately, in the case of spline W-systems on a
uniform mesh, the compression coefficient is equal to hn/hn+1 and must be integer.

To improve a W-system in this sense, i.e., to achieve a higher frequency resolution,

one can use in the LFA the sequence of spaces L
(m)
n , n = 0, 1, . . . ,L

(m)
n ⊂ L

(m)
n+1, where

the space L
(m)
n is generated by translations of functions ϕn,k(x) having the form

ϕn,k(x) = ϕ0(2
nx)xk, k = 0, 1, 2, . . . ,m, (4.47)

with the function ϕ0(x) taken from (4.14) with a step of 2−n.
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This means that we use splines of degree m and defect m–1, i.e., so called Hermitian

splines. To construct orthogonal spaces W
(m)
n such that

L(m)
n = L

(m)
n−1 ⊕W (m)

n , (4.48)

we will find (m− 1) functions ψ0(x), . . . ,ψm(x) of the form

ψs(x) =
2∑

l=−2

m∑

k=0

α
(s)
lk x

kϕ0(x− l) (4.49)

from the condition of their orthogonality to the functions:

xrϕ0(x/2 + 2) , xrϕ0(x/2 + 1) , xrϕ0(x/2) ,

xrϕ0(x/2− 1) , r = 0, 1, . . . ,m.
(4.50)

This gives us 4(m+ 1) homogeneous linear algebraic equations with respect to 5(m+ 1)

unknowns αlk, which will give (m+ 1) linearly independent solutions α
(s)
lk , s = 0, 1, 2, . . .

. . . ,m.
It remains to turn to the orthogonal bases {µs(x− k), s = 0, 1, . . . ,m, k is integer}

in L
(m)
0 = W

(m)
0 and {νs(2nx − 2k), s = 0, 1, . . . ,m, k is integer} in the spaces Wn,

n > 1. The methods described above are applicable in this case too. Here, the function
Φ(t) will be an m ×m square matrix-function, and the expression 1/

√
Φ(t) must be

interpreted as
(√

Φ(t)
)−1

, where
(√

Φ(t)
)2

= Φ(t). One can increase the resolution for
LFA without leaving the space of polygonal lines.

Consider the simplest example. Let L0 be the space of polygonal lines of the unit step,
introduced above. Instead of the basis consisting of translations ϕ0(x− k) of functions
ϕ0(x), we will take the basis consisting of translations of two functions, ϕ0(x− 2k) and
ϕ1(x− 2k + 1), with the step of 2, where

ϕ1(x) = ϕ0(x+ 1) − 4ϕ0(x) + ϕ0(x− 1). (4.51)

Then, for all integer k, l the functions ϕ0(x− 2k) and ϕ0(x− 2l+ 1) will be orthogonal,
i.e.,

∞∫
−∞

ϕ0(x− 2k)ϕ1(x− 2l + 1)dx = 0. (4.52)

It is also obvious that ϕ0(x− 2k) and ϕ0(x− 2l) when k 6= l are orthogonal. In the view
of this fact, construction of the corresponding W-system is not difficult. Compared to
the WS1-system, the spatial (temporal) resolution is halved on the given level, but the
resolution in each octave is doubled when LFA is realized.

Write the functions ψ1(x) and ψ2(x) whose translations ψ1(2nx− 4k) and
ψ2(2

nx− 4k) generate orthogonal the spaces Wn for n > 1:

ψ1(x) = −ϕ0(x+ 3) + 6ϕ0(x+ 2) − 11ϕ0(x+ 1) + 12ϕ0(x)+

+6ϕ0(x− 2) − 11ϕ0(x− 1) − ϕ0(x− 3),

ψ2(x) = ϕ0(x+ 3) − 6ϕ0(x+ 2) + 9ϕ0(x+ 1)−
−9ϕ0(x− 1) + 6ϕ0(x− 2) − ϕ0(x− 3).

(4.53)

To obtain a high decay rate for the Fourier transforms of the W functions as |t| → ∞
and a higher rate of approximation by means of these functions, it is necessary to use
smoother splines.

4*
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The system WS0 has the decay rate of |t|−1
, and the system WS1 has thedecay rate

of |t|−2 . This means that the presence of a peak in one octave has a negative effect
on perceiving a local spectrum picture in neighboring octaves. This shortcoming may
be substantial for some problems of signal processing. If we use splines of degree r
and minimum defect (natural splines), then, in spaces Ln ⊂ Ln+1, we can take bases
of translations of compactly supported functions Br (2nx− k), where Br(x) are the
so-called Schoenberg B splines, i.e., compactly supported splines with minimal support.

They have the form

Br(x) =
r+1∑

k=0

(−1)kckr+1(x− k)r+, (4.54)

where

xr+ =

{
xr if x > 0,
0 if x < 0.

The previously considered function ϕ0(x) is B1(x+ 1). The function Br(x) is equal
to zero outside the interval [0, r + 1] and is positive when 0 < x < r + 1. Its Fourier
transform is

B̃r(t) = eit
r+1
2

(
sin t/2

t/2

)r+1

. (4.55)

To construct orthogonal spaces Wn, it is necessary to construct the function ψ(x) in the
form

ψ(x) =
M∑

k=0

αkBr(x− k), (4.56)

which is orthogonal to all functions Br (x/2−m), where the number of unknowns is
equal to αk for a spline of odd degree r = 2p + 1 (i.e., M + 1 can be taken equal
to 3r + 2), and in the case of even degree r = 2p, M + 1 = 3r + 3. The number of
unknowns can be halved due to the symmetry condition. The function ψ(x) will be
compactly supported and equal to zero outside the interval [0,r+1+M]. Then, in spaces
Wn, n >1, the functions ψ(2nx− 2k) will form a basis. The conversion to an orthogonal
W-system generated by the functions {µ(x − k), ν(2nx − 2k), n > 1, k is integer} is
realized analogously to that for the WS1system of the first-order splines.

In this case, the functions

Φ1(t) =
∞∑

k=−∞

∣∣∣B̃r(t− 2kπ)
∣∣∣
2

(4.57)

and

Φ2(t) =
∞∑

k=−∞

|ψ(t− 2kπ)|2 (4.58)

will be also positive trigonometric polynomials. This allows us to obtain explicitly the
coefficients of expansions of µ(x) with respect to translations Br(x–k) and those of
ν(x) with respect to ψ(x–k). The corresponding W-system will be denoted by WSr.
Functions of this W-system have their Fourier transform decreasing with the rate |t|−r−1

as |t| → ∞. Thus, for example, the system WS3 will be more noise-resistant than
WS1 with respect to a strong noise in neighboring octaves when the LFA is realized.
To increase the resolution inside an octave when the LFA is realized, one should take
some compactly supported functions with a greater support as compared with Bsplines,
such that their Fourier transforms correspond to different parts of the octave. Then the
W-system should be constructed according to the method described above.
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One can also use splines of degree r and defect d > 1 so that both d and r − d will
be sufficiently large. Thus, if we use splines of degree 3 and defect 2, then the Fourier

transforms for functions of a corresponding W-system will decrease with the rate |t|−3

as |t| → ∞, because these splines have a continuous first derivative and their second
derivative has discontinuities of the first kind. On the other hand, the resolution of the
LFA (LFAR) inside one octave still allows us to distinguish two tones (high and low).
In this case, the functions whose translations generate L0 (more exactly, L3,2

0 ), denoted
by ϕ1(x) and ϕ2(x), have the form

ϕ1(x) =

{
1− 3x2 + 2|x|x2, |x| 6 1,
0, |x| > 1;

(4.59)

ϕ2(x) =

{
x (1− |x|)2 , |x| 6 1,
0, |x| > 1.

(4.60)

Instead of spline spaces, one can consider spaces generated by translations of arbitrary
functions ϕn(x) when the condition Ln ⊂ Ln+1 is fulfilled, which is essential in
construction of orthogonal W-systems. As we mentioned above, functions ϕn(x) must
satisfy some conditions. Namely, they must be infinite convolutions of atomic measures.
The condition of compactness implies that the Fourier transform ϕ̃n(t) of the function
ϕn(x) must have the form

ϕ̃n(t) =
∞∏

k=n+1

Pk(t), (4.61)

where Pk(t) are trigonometric polynomials.
For the specific choice of Pk(t), the functions ϕ0(x − k) and ψn

(
x− k2−n+1

)
are

found to be orthogonal projectors to Ln−1. Here, ψn(x) are compactly supported
functions whose translations generate the spaces Wn. These functions are orthogonal in
Ln and form a W-system. This was also the case in the Haar system. The fact that
W-systems exist and consist of compactly supported functions of any finite smoothness
with ψn(x) = ψn (2nx) is a well-known result of wavelet theory. Such systems were
constructed by Daubechies [3]. Since they are widely known, we will not present the
corresponding formulas. Note only that, since these W-systems are generated on each
level by translations of one function, their LFAR inside the octave is equal to zero.
Naturally, they can be modified by means of combining translations of one level in blocks
of m adjacent translations and subjecting W -functions in each block to an orthogonal
transformation such that the Fourier transforms of the newly obtained functions will be
within a frequency octave corresponding to the given level to be separated, i.e., allowing
us to distinguish different parts of the octave. In other words, each of these modified
W -functions must correspond to one of m subintervals of the given octave.

One cannot modify the Daubechies W-functions themselves but can realize some
corresponding orthogonal transformations (especially, DPF) with blocks of Fourier
coefficients with respect to an orthogonal Daubechies orthogonal W-system. In this
case, to provide a higher frequency resolution, one has to take smoother Daubechies
W-systems. Here, in the first place, Fourier transforms of corresponding W-functions
will decrease faster as |t| → ∞, and, therefore, the negative effect of noise from adjacent
octaves of the evaluation of spectrum in this octave will be smaller. In the second
place, the length of the Daubechies W-functions increases as their smoothness increases.
Therefore, the number of functions for the specific level of the W-system whose supports
contain the given point x0 increases, which allows us to enlarge the block length in the
DFT when the LFA is realized. Finally, we obtain once more the LFA using temporal
windows of a special form.
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4.7. Meyer Wavelets

Let us consider an approach for constructing W-systems opposite to some extent to
the one described above, although formally it satisfies the scheme of multiresolution
analysis. This approach was proposed by Meyer [4]. In contrast to the previously
described methods of constructing W-systems by means of functions compactly sup-
ported in the time domain, his approach presupposes the use of functions with compactly
supported Fourier transforms. In this case, the localization in the frequency domain is
maximal, whereas the localization in the time domain can be neither maximal (such
W-functions cannot be compactly supported) no exponential.

On the other hand, these W-systems of infinitely differentiable functions and even
entire functions of exponential type can possess good approximation properties.

Let S(t) be an infinitely differentiable odd function such that

S(1) = 0, S(k)(1) = 0, (4.62)

where k = 1, 2, . . ., and let the even functions α(t) and β(t) be determined by the
formulas

α(t) =





0 if |t| > 8π/3,

π/4
(
s
(
3

π
|t| − 3

)
+ 1
)

if 2π/3 6 |t| 6 4π/3,

π/4
(
s
(
3− 3

2π
|t|
)

+ 1
)

if 2π/3 6 |t| 6 8π/3,

(4.63)

β(t) =





1 if |t| 6 2π/3,

π/4
(
S
(
3− 3

π
|t|
)

+ 1
)

if 2π/3 6 |t| 6 4π/3,

0 if |t| > 4π/3.

(4.64)

Let functions v(x) and µ(x) be determined by the formulas

µ(x) =
1

2π

∞∫
−∞

eitx sin β(t)dt, v(x) =
1

2π

∞∫
−∞

eitx sinα(t) eit/2dt. (4.65)

Then, the functions µ(x − k) and v (2nx− k), where n = 0, 1, . . . , k is integer, form
Meyer’s W-system. More precisely, we consider a continuum of W-systems correspond-
ing to an arbitrary infinitely differentiable odd function S(t) satisfying condition (4.62).
A concrete W-system is obtained by means of a specific choice of S(t). In [4], Meyer
presents a graph for v(x), although he does not mention to which S(t) it corresponds.

Let explain how we achieve an orthogonality of this class of W-systems. In fact, it
is necessary to verify the orthogonality of functions µ(x− k) and v(x− l) for integer k
and l, orthogonality of µ (x− k1) and µ (x− k2) for k1 6= k2, v (x− l1) and v (x− l2) for
l1 6= l2, and, finally, orthogonality of v(x− k) and v(2x− l) for all integer k and l.

The orthogonality for other pairs of functions follows from the Parceval equality
because products of their Fourier transforms are identically equal to zero.
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Therefore, we only must verify the identities

∞∑

k=−∞

|µ̃ (t− 2kπ)|2 =
∞∑

k=−∞

|ṽ (t− 2kπ)|2 ≡ 1,

∞∑

k=−∞

µ̃ (t− 2kπ) ṽ (t− 2kπ) ≡ 0,

∞∑

k=−∞

ṽ (t− 2kπ) ṽ (t/2− kπ) ≡ 0,

(4.66)

where µ̃(t) = sinβ(t) and ṽ(t) = eit/2 sinα(t) are the Fourier transforms of the functions
µ(x) and v(x).

If S1(t) is an even function of the class C∞ with the support [−1,1] and
1∫
−1

S1(t)dt =

= 1, then function S(t) of the form

S(t) = −1 + 2

t∫

−1

S1(τ ) dτ (4.67)

satisfies condition (4.62).
In particular, one can use the function up (t) as S1(t), as it was done in [13]. Then,

S(t) = −1 + 2 up (t/2− 1/2).
The fact that the function up (x) satisfies functional-differential equation (see chap-

ter 1, section 1.1) can be used for evaluating functions µ(x) and v(x) by means of (4.65).
Otherwise, the evaluation of functions µ(x) and v(x), especially for large x, in the

form of improper integrals of rapidly oscillating functions can be a difficult problem.

4.8. Kotelnikov–Shannon Wavelets

If we refuse of the infinite differentiability of function S(t) presupposed by Meyer,
then we obtain W-systems rapidly decreasing with the rate |x|−m as |x| → ∞ when
m is finite. As follows from [16–18], there exist W-systems consisting of elementary
functions. For brevity, we shall call them WE-systems. Now, let describe these systems.

The simplest of such WE-systems, as simple as the Haar system and dual to it in
some sense, is the orthogonal systemWE1, which will be called the Kotelnikov–Shannon
system. It has the form

µ(x− k), v (2nx− k) , n = 0, 1, 2, . . . , k is integer, (4.68)

where µ(x) = sin πx/πx and v(x) =
sinπx/2

x
cos 3πx/2 are obtained for the following

choice of S(t),

S(t) =

{
−1 if t < 0,
1 if t > 0,

(4.69)

if we use relations (4.63)–(4.65). The factor exp (it/2) in (4.65) can be omitted,
otherwise we obtain a WE-system with v1(x) = v (x− 1/2).
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Thus, for the WE1-system,

µ̃(t) =

{
1 if |t| 6 π,
0 if |t| > π;

(4.70)

ṽ(t) =

{
1 if π 6 |t| 6 2π,
0 if |t| < π or |t| > 2π.

(4.71)

The Fourier transforms corresponding to the function v (2nx− k) are equal to
exp (i2−nkt) in the octave 2nπ < |t| < 2n+1π and equal to zero outside it. Thus, the
functions of the Kotelnikov–Shannon W-system of the same resolution level with respect
to one coordinate affect only one frequency octave. To obtain the required solution inside
one octave when the LFA is realized, one can simply modify the WE1-system, intro-
ducing, instead of two modifications µ(x) and γ2(t) = (3/4)

(
sin t− (1/3) sin3 t+ 2/3

)
, a

system of 2m functions, µs(x) and vs(x), s = 1, . . . ,m, whose Fourier transform is con-
centrated inside the part number s of m parts of ranges [−π,π] and [−2π,−π] ∪ [π, 2π],
respectively. One can use the initial WE1 system, combine Fourier coefficients with
respect to this system in blocks, and realize the DFT in each block.

Actually, the only but significant shortcoming of the Kotelnikov–Shannon W-systems
is a slow decrease of functions µ(x) and v(x), which belong to L2(R) but not to L1(R).

Now, consider the system WE2 obtained from (4.63)–(4.65) if S(t) = t.
Then

µ̃(t) =





1, 0 6 |t| 6
2π

3
;

sin
(
π − 3

4
|t|
)
,

2π

3
< |t| 6

4π

3
;

0, |t| > 4π

3
.

(4.72)

ṽ(t) =





sin
(
3

4
|t| − π

2

)
eit/2,

2π

3
6 |t| 6

4π

3
;

sin
(
π − 3

8
|t|
)
eit/2;

4π

3
6 |t| 6

8π

3
;

0, |t| 6
2π

3
or |t| >

8π

3
.

(4.73)

Consequently,

µ(x) =
cos 2π/3(2x− 1)

π (1/4 + x) (7/4− x)
+

sin (2πx/3− π/3) (1/2x+ 13/18)

2π (x− 1/2) (x+ 1/4) (7/4− x)
, (4.74)

v(x) =
1

2π

(
3/4 cos (8πx/3− 4π/3)

9/64− (x− 1/2)2
−

− 9

16

(x− 1/2) sin (4πx/3− 2π/3)(
(x− 1/2)2 − 9/16

) (
9/64− (x− 1/2)2

)


−

− 3

2π

cos (2πx/3− π/3)(
(x− 1/2)2 − 9/16

) . (4.75)

The W-system WE2 consists of functions v (2nx− k) and µ(x− k), where n = 0, 1, 2, . . .
. . . , k is integer. Functions of this system decrease with the rate as |x| → ∞, but the
Fourier transform of functions µ(x) and v(x) is two times wider as compared to that of
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WE1, and only two levels of the W function affect each octave of the frequency domain.
If we suppose

S(t) =

{
αt if |t| 6 1/α < 1, α > 1,
sign t if 1/α < |t| 6 1,

(4.76)

then, due to (4.69)–(4.65), we obtain the W-system denoted by WE1−1/α. When α = 1,
it is the WE2 system; when α = ∞, the WE1system. If 1 < α < ∞, then it is the

W-system of functions decreasing with the rate |x|−2
as |x| → ∞, and the degree of

overlapping for adjacent levels with respect to frequency will be less than that of WE2.
These WE systems can also be called rectangular, trapezoidal, and triangular ones,
respectively, due to the forms of the Fourier transform for the function v(x).

4.9. WE-systems with Arbitrary Number of Continuous Derivatives

Now let us consider the method for constructing WE-systems (elementary wavelet
systems) with an arbitrary number of continuous derivatives of functions µ̃(t) and ν̃(t),
and, correspondingly, functions µ(x) and ν(x) decreasing with the rate |x|−m as |x| → ∞
for any finite m. We can achieve this in the following way. For a system µ(x − k),
ν (2nx− k), n = 0, 1, 2, . . ., where k is integer, to be orthogonal, identities (4.66) must
be fulfilled. Meyer obtains formula (4.66) from the identity sin2(x) + sin2(π/2− x) ≡ 1.

Instead of it, we will use the identity (
√
x )

2
+
(√
x− 1

)2 ≡ 1; i.e., instead of sin y, we
will use

√
y .Let r > 1 be an integer and

γr(t) =




t∫

0

cos2r−1 τdτ + αr




2αr
, (4.77)

where αr =
π/2∫
0

cos2r−1 t dt.

The function γr(t) is a trigonometric polynomial with γr(t) > 0 for all real t. Hence,
there exists a trigonometric polynomial δr(t) (polynomial with respect to exp(it)),
generally, complex-valued and such that

γr(t) = δr(t)δr(t) = |δr(t)|2 , (4.78)

where δr (π/2) = 1.
Assume that, for t > 0,

ϕr(t) =





1, 0 6 t 6
2π

3
,

δr
(
−3

2
t+

3

2
π
)
,

2π

3
6 t 6

4π

3
,

0,
4π

3
< t,

(4.79)

and, for t < 0,
ϕr(t) = ϕr(−t), (4.80)

(the bar denotes complex conjugation).
Then, for t > 0,

ψr(t) =

{
0, if 0 6 t 6 2π/3 and 8π/3 6 t,
δr (3t/2− 3π/2) , if 2π/3 6 t 6 4π/3,
δr (−3t/4 + 3π/2) , if 4π/3 6 t 6 8π/3,

(4.81)
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for t < 0, ϕr(t) = ϕr(t), and, finally,

µr(x) =
1

2π

∞∫
−∞

e−itxϕr(t)dt, (4.82)

vr(x) =
1

2π

∞∫
−∞

e
−it

(
x+

1
2

)

ψr(t)dt. (4.83)

Then, the system µr(x − k), vr (2nx− k), n = 0, 1, 2, . . . , where k is integer, is an
orthogonal W-system.

The conditions ϕr(t) = ϕr(−t) and ψr(t) = ψr(−t) indicate that the real parts of
functions ϕr(t) and ψr(t) are even functions of t and the imaginary parts are odd ones.
Therefore, functions µr(x) and vr(x) are real-valued (when xis real).

Formulas (4.82) and (4.83) can be rewritten in the form

µr(x) =
1

π

∞∫

0

(cos txℜϕr(t) + sin txℑϕr(t)) dt, (4.84)

vr(x) =
1

π

∞∫

0

(cos txℜψr(t) + sin txℑψr(t)) dt. (4.85)

The functions ϕr(t) and ψr(t), by their definition, belong to Cr; i.e., they have r
continuous derivatives. Here, the derivative of order (r + 1) has discontinuities of the

first kind only. Therefore, the functions µr(x) and vr(x) decrease with the rate |x|−r−1

as |x| → ∞. In view of the fact that the functions ϕr(t) and ψr(t) are piecewise
trigonometric polynomials (trigonometric splines), their Fourier transforms are

δ2(t) = 1/
[(√

3 − 1
)
4
] [(

− sin t+ 2−
√
3
)

(cos 2t− 2 sin t− 1)−
− cos t (sin 2t+ 2 cos t) + i (cos t (cos 2t− 2 sin t− 1) +

+ (sin 2t+ 2 cos t)
(
− sin t+ 2−

√
3
))]

,

and vr(x) are elementary functions. More exactly, they are finite sums of expressions

cosαkx/(x− xk), sinαkx/(x− xk).

Let denote this system byWEr+1, r > 1. When r = 1, it coincides with the WE2-system
constructed above. Consider in detail the construction of the WE3-system for r = 2.

In this case,
γ2(t) = (3/4)

(
sin t− (1/3) sin3 t+ 2/3

)
. (4.86)

For the function δ2(t), we obtain the expression

δ2(t) = 1/
[(√

3 − 1
)
4
] [(

− sin t+ 2−
√
3
)

(cos 2t− 2 sin t− 1)−
− cos t (sin 2t+ 2 cos t) + i (cos t (cos 2t− 2 sin t− 1) +

+ (sin 2t+ 2 cos t)
(
− sin t+ 2−

√
3
))]

. (4.87)
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Hence,

ℜδ2(t) =

(√
3 − 2 +

(
2
√
3 − 3

)
sin t−

√
3 cos 2t− sin 3t

)

(√
3 − 1

)
4

,

ℑδ2(t) =

((
3− 2

√
3
)

cos t−
√
3 sin 2t+ cos 3t

)

4
(√

3 − 1
) .

(4.88)

Then, the function µ2(x) is

µ2(x) = − sin (2π/3)x

πx
+

(√
3 − 2

)

π
(√

3 − 1
)
4

sin
(
4π

3

)
x− sin

(
2π

3

)
x

x
−

− 1

4π
(√

3 − 1
)

sin
(
4π

3

(
x+

9

2

))
− sin

(
2π

3

(
x+

9

2

))

x+ 3/2
+

+

√
3

4π
(√

3 − 1
)

sin
(
4π

3
(x+ 3)

)
− sin

(
2π

3
(x+ 3)

)

x+ 3
−

−

(
2
√
3 − 3

)

4π
(√

3 − 1
)

sin
(
4π

3

(
x+

3

2

))
− sin

(
2π

3

(
x+

3

2

))

x+ 3/2
. (4.89)

Analogously, for the function v2(x), we obtain

v2(x) =
1

4π
(√

3 − 1
)




sin
(
4π

3
(x− 4)

)
− sin

(
2π

3
(x− 4)

)

x− 4
+

+
√
3

sin
(
4π

3

(
x− 5

2

))
− sin

(
2π

3

(
x− 5

2

))

x− 5

2
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−
(
2
√
3 − 3

) sin
(
4π

3
(x− 1)

)
− sin

(
2π

3
(x− 1)

)

x− 1
+

+
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(
4π

3

(
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1

2
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(
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3
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(
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3

(
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− sin

(
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3
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5
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4

+

+
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3 − 2
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(
8π

3

(
x+

1

2
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− sin

(
4π

3

(
x+

1

2

))

x+
1

2


 . (4.90)
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4.10. Wavelets Systems based on Atomic Functions

Consider W-systems constructed by means of the atomic functions.
Atomic functions are compactly supported (i.e., they are equal to zero outside a finite

interval) solutions of linear functional-differential equations with constant coefficients
and linear transformations of their argument

Ly(x) = λ
M∑

k=1

cky (ax− bk), |a| > 1, (4.91)

where L is a linear differential operator with constant coefficients [8, 10, 15]. Atomic
functions are well localized because of their compactness. Their Fourier transforms
decrease on the real axis faster than any power function. Moreover, these Fourier
transforms are infinite products of periodic functions. This means that atomic functions
themselves generate W-systems. We will call them WA-systems according to the scheme
described at the beginning. These orthogonal WA-systems consist of exponentially
localized infinitely differentiable functions. Naturally, functions of these systems are
not the compressed translations of one or two functions. This means that the form
of generative functions varies from one level to another (when multiresolution analysis
is realized). However, the demand of constancy for this form is not necessary in
many cases. Moreover, an asymptotic similarity nevertheless is a form of generative
functions. For levels with large numbers, it is close to the density function of the normal
distribution, i.e., to exp

(
−x2/2

)
.

Consider a concrete example. Let UPn be the spaces of linear combinations of
translations of functions up (x)

∑

k

ck up
(
x− k · 2−n

)
. (4.92)

A space UPn has a basis consisting of translations of the compactly supported atomic
function Fupn(x) [12] equal to zero outside the interval

[
−(n+ 2)2−n−1, (n+ 2)2−n−1

]

with length (n + 2)2−n → 0 as n → ∞. Obviously, the condition UPn ⊂ UPn+1 is
fulfilled owing to (4.53). As was shown in [11, 13–15], the spaces UPn possess optimal
properties from the viewpoint of approximation theory. One of the main properties
of functions from the class Cr (r times infinitely differentiable) is their capability of
being approximated by elements of spaces UPn with the best possible rate. In other
words, spaces UPn are extremal or asymptotically extremal from the viewpoint of the
Kolmogorov widths [26] and also for all r. Such a combination of an approximate
universality and localization (the presence of a basis of functions with small supports)
is unique. The approximation technique used earlier was either approximately universal
but not localized (classical technique of polynomials and rational functions), or localized
but not approximately universal, as the novel techniques of splines, which possess the
approximation saturation. To approximate smoother functions, one can use smoother
splines. In a certain sense, atomic functions are considered as infinitely smooth splines
of the class C∞. They are used in different domains of mathematics and its applications
[9–15, 20–23], particularly in signal and image processing including the synthesis of
weighting window functions for the Fourier analysis [21–22].

All the aforesaid allows us to conclude that the use of the WA-system is very promis-
ing, especially in solving boundary value problems for partial differential equations.

In the first study of the function up (x) [7], published in 1971, long before the
appearance of ondelettes or wavelets, it was proposed to use up (2nx− k · 2m) as trial
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functions, i.e., to associate a function f with a set of coefficients cn,m,k that are the
values of f on the trial function

up (2nx− k · 2m) , cn,m,k = f ( up (2nx− k · 2m)) (4.93)

or

cn,m,k =

∞∫
−∞

f(x)up (2nx− k · 2m) dx. (4.94)

Therefore, a nonorthogonal W-system was considered. It should be noted that, in the
modern theory of W-systems, nonorthogonal W-systems are widely used.

The functions Fupn(x) have the form

Fupn(x) =
1

2π

∞∫
−∞

eitxFn(t)dt, (4.95)

where

Fn(t) =

(
sin t · 2−n−1

t · 2−n−1

)n+1 ∞∏

k=n+2

sin t · 2−k

t · 2−k
. (4.96)

From (4.96), it follows that the function Fupn(x) is a convolution of the B spline
Bn (2nx− n− 1) with the function up n

(
2n+1x

)
2n+1 (to within normalization).

Fupn(x) = αnBn (2nx− n− 1) ⊗ up n
(
2n+1x

)
2n+1.

If we consider a sequence of spaces Sn,n of the natural splines of degree n on a mesh with
the width 2−n, i.e., a sequence of spline spaces with their degree increasing to obtain
an approximate universality, then the condition Ln ⊂ Ln+1, necessary for constructing
a W-system, is not fulfilled Sn,n 6⊂ Sn+1,n+1.

If we act on the space Sn,n with a linear operator C (up (n)) of a convolution
with the function 2n+1 ·

(
up n

(
2n+1x

))
, then we will obtain a sequence of spaces

UPn = C (up (n))Sn,n, where UPn ⊂ UPn+1. Obviously, the C (up (n)) → I as
n → ∞ (where Iis an identity operator), because 2n+1

(
up n

(
2n+1x

))
tends to δ(x)

(δ is the Dirac delta-function). The space UPn for even n is generated by trans-
lations of the function Fupn(x) of the form Fupn (x− 2−nk), and, for odd n, by
Fupn

(
x− 2−nk + 2−n−1

)
. To construct spaces Wn such that UPn+1 = UPn ⊕Wn+1

and Wn+1⊥UPn, i.e., orthogonal projectors to UPn in UPn+1, one must find coef-
ficients of a finite linear combination of translations of the function Fupn+1(x) of
the form

∑
l

ckFupn
(
x− l · 2−n−1 + 2−n−2

)
that is orthogonal to all translations of

the function Fupn(x) of the form Fupn (x− 2−nk) for even n, and of the form∑
l

ckFupn
(
x− l · 2−n−1

)
, which is orthogonal to all Fupn

(
x− 2−nk + 2−n−1

)
, for

odd n.
Since the translation width of Fupn+1(x) in the space UPn+1 is smaller by a factor

of two than that of the function Fupn(x) in UPn, and the support of Fupn+1(x) is
approximately shorter by a factor of two than that ofFupn(x), this problem is easily
solvable.

Let ψn+1(x) be a nonzero function with minimal support from the space UPn+1

obtained as a result of solving a finite homogeneous system of linear equations. Then, the
translations ψn+1 (x− k · 2−n) form a basis for the required space Wn+1, n = 0, 1, . . .,
and W0 coincides with UP0 being generated by the functions up (x− k).
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To obtain an orthogonal W-system, it remains to construct an orthogonal basis µ(x−
− k) formed by translations of the function µ(x) in W0 and translations v

(
x− k · 2−n+1

)

of the function vn(x) in spaces Wn, n > 1 by the methods described above and illustrated
by the example of constructing a WSn-system. Moreover, one can obtain both one-sided
and symmetric W-functions. Here, the W-system will be exponentially localized, but,
due to the dependence of the characteristic equation on n, the investigation of the rate
of exponential decay of vn(x) as |x| → ∞ demands additional analysis that is beyond the
scope of this work.
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Chapter 5

MODELS OF IMAGE AND NOISE

5.1. Noise

Real-world images are usually affected by random fluctuations in intensity, color,
texture, object boundary, or shape. There is a lot of different and complex reasons
for these fluctuations, often due to factors such as non-uniform lighting, random
fluctuations in object’s surface orientation and texture, sensor’s limitations, etc. The
processing of such images can be treated as a problem of statistical inference, which
requires the definition of a statistical model corresponding to the image and noise pixels.
Although simple image models can be obtained from image statistics such as the mean,
variance, histogram, and correlation function, the most general approach is to use
random field models. Combined with various frameworks for statistical inference such
as maximum likelihood (ML) and Bayesian estimation, random field models are used
in many applications of statistical image processing. These include image restoration,
enhancement, classification, segmentation, compression, and synthesis [1–5].

The most general model of image-noise representation consists in definition of the
random process (field) representing the multidimensional signal and the random process
representing the corrupted multidimensional image along with the joint density that
models the corruption mechanism [1, 2, 4–6].

The simplest additive noise corruption in an image is assumed in the form of zero-
mean additive white noise model.

Images are also generally thought of as relatively broadband signals. Important visual
information may reside at mid-to-high spatial frequencies, since visually significant
image details, such as edges, lines, and textures typically contain higher frequencies.
Nevertheless, the higher image frequencies are visually significant.

In many cases, the classical approach to noise suppression using linear filtering
algorithms is equivalent to image enhancement by low-pass filtering. For a given filter
type, different quality of smoothing can be attained by adjusting the bandwidth of a
filter. The use of a narrower bandwidth low-pass filter can reject high-frequency content
of an image, carrying significant information but, in the same time, gives the possibility
to decrease the additive noise corruption.

Image sharpening refers to any enhancement technique that highlights edges and
fine details in an image. In principle, image sharpening consists in adding to the original
image a signal proportional to a high-pass filtered version of the original image.

When a multidimensional signal (two-, 2D, or three-dimensional, 3D) is observed,
it is usually corrupted by noise of different nature. The noise may be additive,
multiplicative, or of a more general nature, and some assumptions should be made on its
statistical properties. The goal is to estimate the original uncorrupted multidimensional
signal with a good accuracy and good preservation quality for edges and fine details
[1, 5, 7–9].

Digital image enhancement and analysis have played and will play an important
role in scientific, industrial, and military applications. In addition to these applications,
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image enhancement and analysis are increasingly used in consumer electronics and other
applications; for instance, by the Web users, who rely not only on the built-in image
processing protocols, such as JPEG2000, MPEG format, etc., and interpolation.

Image enhancement refers to processes seeking to improve the visual appearance of
an image. As an example, image enhancement might be used to emphasize the edges
and fine details within the image. Such edge-enhanced image would be more visually
pleasing to the naked eye or perhaps could serve as an input to a machine that would
detect the edges and make measurements of shape and size of the edges of the objects.

The leading role mainly belongs to the following factors: the mechanism of gener-
ating multidimensional signals, the nature of corruption, and the accuracy of solution
according to the made assumptions.

5.2. Additive Noise

Optimal methods of linear filtering theory can be useful only when the corruption can
be represented as a Gaussian process and the criterion of accuracy is the mean-square
error (MSE). This assumption is not true in most applications, for example in digital
systems, where the errors are often caused by bit changes and the distribution is far
from Gaussian. On other hand, for the visual quality, the MSE is not a realistic criterion
[1, 3, 4, 9].

In image processing the assumption of additive white noise rarely holds. The
intensity of an image formed by an image acquisition system is usually multiplicative
with respect to illumination and the reflectivity of the observed surface.

Some of the noises are naturally occurring, e.g., Gaussian noise; some are sensor
induced, e.g., photon counting noise and speckle one; and some result from various
processing, e.g., quantization and transmission.

Noise is usually defined as an unwanted component of the image. Gaussian noise is
a part of almost any signal, for example, the white noise on a weak television station is
well modeled as Gaussian. Since image sensors have to count photons — especially in
low light situations — and the number of photons counted is a random quantity, images
often have photon counting noise usually modeled as a Poisson process [1–4].

Photographic grain noise is a characteristic of photographic films. It limits the
effective magnification that one can obtain from a photograph. This noise in photographic
films is sometimes modeled as Gaussian and sometimes as Poisson.

Gaussian noise is usually considered to be an additive component.
The additive model is most appropriate when the noise in the model is independent

of an image. There are many applications of the additive model: thermal noise,
photographic noise, and quantization noise, etc.

Also known are quantization noise and speckle in coherent light situations.

5.3. Speckle Image Noise

In this work, we touch on other important applications of image processing, such as
ultrasound (US) [1, 10, 11] and SAR imaging [12, 13]. US visualization is one of the
most efficient methods of medical diagnostics, also widely used in other fields. On other
hand, SAR imaging systems are used in applications of remote sensing. A significant
limitation on the quality of these systems is the effect of multiplicative (speckle) noise.

Speckle is one of the more complex image noise models. It is signal dependent,
usually non-Gaussian, and spatially dependent. The physical nature of this noise is in
some variations in phase and amplitude that can effect in such a way: some of these
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variations in phase add constructively, resulting in strong intensities, and others add
deconstructively, resulting in low intensities. These variations are called speckle.

For understanding the speckle corruptions, it is common to use the point-spread
function (PSF). Depending on sensor type and system (US, SAR, laser, etc.), there can
be three cases.

The PSF is so narrow that the individual variations in surface roughness can be
resolved, which is uncommon in most applications.

The PSF is broad in comparison with typical size of the surface roughness, but, in
the same time, small in comparison with the details in the image. This is a common
case and the speckle noise is exponentially distributed and uncorrelated on the scale of
the details in the image. This gives a multiplicative noise model.

The PSF is broad compared to both the characteristic object’s size and for surface
roughness. The speckle noise is correlated and its distribution can be determined by the
PSF.

Usually, it is assumed that the surface is very rough on the scale of the wavelengths,
which means that each microscopic reflector has a random height and random orientation
with respect to the incoming polarization field. The random changes are reflected
in the amplitude, phase, and polarization of the signal, which can be approximated
as independent from each other and from changes at any other point. Because the
system cannot resolve variations in roughness, it results in speckle noise. All coherent
systems including lasers, SAR, and US sensing systems are subjected to an effect of
multiplicative (speckle) noise. This noise arises in sensing by such coherent sensors
of objects having nonhomogeneities. In this case, the filtration of speckle noise is an
obligatory pre-processing procedure, making it possible to improve image characteristics
and, as a consequence, the quality of recognition and diagnostics in remote sensing,
medical and other applications [10, 11].

Human perception is highly sensitive to edges and fine details of an image, so
the visual quality of an image can be enormously degraded if the high frequencies
are attenuated or completely removed. In contrast, enhancing the high-frequency
components of an image leads to an improvement in the visual quality.

5.4. Impulsive Image Noise

In many applications of image processing, the noise is far more complex and the
mixture of noise and signal is very complicated. Linear methods largely fail in analysis
of impulsive noise. It is assumed that a noise process is impulsive if many of the
signal values do not change at all or change slightly and some signal values change
dramatically, i.e., the change is clearly visible [1, 2, 4, 10].

In practice, the same number of bits will be used to represent the noisy and the
noise-free signal, usually 8 bits or 256 levels 0, 1, . . . , 255. There are many models
for impulsive noise. For example, the impulses may have different amplitude values.
Common for the models of impulsive noise in images is the appearance of noise as black
and/or white (for color images, color) spots in the images, i.e., the noisy pixels have
either a very small or very large values. This type of noise is often called salt-and-pepper
noise because one could create it by sprinkling salt-and-pepper on an image. Formally,
pure salt-and-pepper noise is very easy to remove from images because maximum values
rarely occur in actual images and, thus, just checking whether the pixel has a maximum
or minimum value reveals if it is corrupted or not. As a rule, the realistic impulsive
noise is modeled as bit errors in signal values. Typical sources for this kind of noise
are channel errors in communication or storage. For example, such noise arises in
transmission of images over noisy digital links. Let each a pixel be quantized to B bits
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in a usual way. Assume that the channel is binary symmetric with a given crossover
probability. Then it is easy to show that the contribution to the MSE from the most
significant bit is approximately 3 times that of all the other bits. This noise is an
example of (very) heavy-tailed noise [4].

Impulses are also referred to as outliers. Another approach presented below can also
be effective and is connected with robust statistics based on rank (R) and generalized
maximum likelihood statistics (M) [14, 15]. Details of this approach will be explained
below in this work.

Several types of impulsive models usually can be used. Some of them need the
detail a priori information on the degradation process in each channel for multichannel
(or color) multidimensional image. In our opinion, complex models that need several
parameters that must be determined a priori or during the processing stage have low
tolerance and therefore such models can produce confusion in the interpretation of
filtering results [7–9, 16, 17].

Below, we use a simple and, in the same time, the most severe model of impulsive
noise from the viewpoint of image degradation. This model needs only prior information
about the probability p of random spikes appearance, which are independent in each
channel. Additionally, the amplitude of impulsive noise is modeled as a uniformly
distributed random value within the interval of given values (0–255) for each channel in
the case of color (multichannel) images.

5.5. Mathematical Solutions Applied in Noise Models

There exist different models of noise that are dependent on physical noise nature or
different representation of multidimensional signals [1–5, 7, 8, 16, 17]. According to the
discussion presented above, the simplest model is the model of additive Gaussian noise
degradation

u(i, j) = Y (i, j) + n(i, j), (5.1)

where Y (i, j) is an original image, u(i, j) is a degraded image and n(i, j) is a Gaussian
additive noise.

Also, we use the following model for noise influence in the case of impulse noise
degradation [18, 19]:

Y (i, j) = ni (Y (i, j)) ,

ni (Y (i, j)) =

{
random values with probability P ,

Y (i, j) another case,

(5.2)

where Y (i, j) is an original image, u(i, j) is a degraded image and ni (Y (i, j)) is the
function presented above.

There is another, more complicated, model that uses information about corruption in
each channel [20, 21]:

−→
Y =





(n1,YG,YB) with probability pp1,
(YR,n2,YB) with probability pp2,
(YR,YG,n3) with probability pp3,

(n1,n2,n3) with probability p(1−∑3
i=1 pi),

(5.2a)

where ni are independent random values for each channel, uniformly distributed in the
interval (0, 255) for every pixel or voxel. The main drawback of this model is that a

priory information about values p and pi is needed to implement the filtering algorithm.
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In the case of multiplicative noise degradation, model (5.1), (5.2) can be represented
in the form [22, 23]:

Y (i, j) = ni (εm(i, j) · Y (i, j)) , (5.3)

where nm(i, j) denotes multiplicative noise.
Equations (5.1)–(5.3) present the basic models in noise degradations.
For mulichannel images, it is necessary to apply equation (5.2) for each channel.
In the case of multidimensional image representation, model (5.2)–(5.3) is changed

and, for 3D discrete image, can be rewritten as follows [17]:

Y (i, j, k) = ni (Y (i, j, k)εm(i, j, k)) , (5.4)

where ni (Y (i, j, k)) is the functional

ni (Y (i, j, k)) =

{
noise ni with probability p,

Y (i, j, k), otherwise,

Yspeckle(i, j, k) is a noisy observation (i.e., the recorded image) of the 3-D function
Y (i, j, k) (i.e., the noise-free image to be recovered), and εm(i, j, k) is the corrupting
multiplicative (speckle) noise component.

5.6. Objective and Subjective Criteria

To evaluate different filters and compare their performances against the performance
of reference filtering techniques presented in literature, several criteria are used, such as
the peak signal-to-noise ratio (PSNR) and normalized mean-square error (NMSE) for
the evaluation of noise suppression, the mean absolute error (MAE) for quantization of
edges and fine detail preservation, and the normalized color difference (NCD) for the
quantization of the color (multichannel) perceptual error [1, 4, 8, 16, 17, 20]:

PSNR = 10 · log
[

(255)2

MSE

]
, dB, (5.5)

NMSE =

M1∑

i=1

M2∑

j=1

‖y(i, j) − y0(i, j)‖2L2

M1∑

i=1

M2∑

j=1

‖y0(i, j)‖2L2

, (5.6)

MAE =
1

M1M2

M1∑

i=1

M2∑

j=1

‖y(i, j) − y0(i, j)‖
L1
, (5.7)

where MSE =
1

M1M2

M1∑
i=1

M2∑
j=1

‖y(i, j) − y0(i, j)‖2L2
is the mean-square error, M1, M2 are

the image dimensions, y(i, j) is the 3D vector value of the pixel (i, j) in the filtered
color image, y0(i, j) is the corresponding 3D vector value of the pixel in the original
uncorrupted image, and ‖·‖L1

and ‖·‖L2
are the L1- and L2-vector norms, respectively;

NCD =

M1∑

i=1

M2∑

j=1

‖∆ELuv(i, j)‖L2

M1∑

i=1

M2∑

j=1

‖E∗
Luv(i, j)‖L2

. (5.8)
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Here, ‖∆ELuv(i, j)‖L2
=
[
(∆L∗(i, j))2 + (∆u∗)2 + (∆v∗)2

]1/2
is the norm of color (or

multichannel) error; ∆L∗, ∆u∗, and ∆v∗ are the difference in the L∗, u∗, and v∗

components, respectively, between the two color vectors that present the filtered image
and uncorrupted original one for each pixel (i, j) of an image; and ‖E∗

Luv(i, j)‖L2
=

=
[
(L∗)2 + (u∗)2 + (v∗)2

]1/2
is the L2 norm or magnitude of the uncorrupted original

image pixel vector in the L∗u∗v∗ space. It has been proved that the NCD objective
measure expresses well the color distortion (for example, see [8, 9]).

It should be noted that, in the case of 3D imaging when the observation is presented
as in equation (5.2), all the criteria should be treated similarly in calculating all the
measures (PSNR, NMSE, MAE, and NCD) for 3D image, for example, as for MAE
criterion:

MAE =
1

M1M2M3

M1−1∑

i=0

M2−1∑

j=0

M3−1∑

k=0

∣∣∣Yspeckle(i, j, k) − Ŷ (i, j, k)
∣∣∣, (5.9)

where Y (i, j, k) is the original free noise 3-D image voxel (in the case of color image,

3D vector), Ŷ (i, j, k) is the restored 3-D image voxel (3D vector for color image), and
M1,M2,M3 are the sizes of the 3-D image.

What weight is given to each error criterion depends on particular applications
where the filter is used. Since it is difficult to define the error criteria for an accurate
quantization of image distortion, we also use a subjective measure of the image distortion
in form of subjective visual criterion presented by error image — the absolute difference
between the original and filtered image. So, subjective visual comparison of the images
provides information about the spatial distortion and artifacts introduced by different
filters, as well as the noise suppression quality of the algorithm, and present performance
of the filter when filtering images are observed by the human visual system.
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Chapter 6

TYPES OF STATISTICAL ESTIMATORS

6.1. Maximum Likelihood and M estimators

Huber has proposed the M estimators as the maximum likelihood (ML) function
estimations [1–6]. Its definition is given via function ρ, {ρ(X) = ln (F (X))}, related to
the density probability function F (X) of input data sample set Xi, i = 1, 2, . . . ,N , as

θ̂ = argmin
θ∈Θ

N∑

i=1

ρ(Xi − θ). (6.1)

The point estimation of parameter θ can be found by calculating the derivative ψ with
respect to θ [1, 4, 5]: N∑

i=1

ψ(Xi − θ) = 0, (6.2)

where θ is unknown bias of parameter.
Standard technique consists in the usage of the iterative Newton procedure [3, 4]

and permits one to write the following equation:

θ̂(q+1) = θ̂(q) + S(q)

∑
ψ

[
Xi − θ̂(q)

S0

]

∑
ψ′

[
Xi − θ̂(q)

S0

] , (6.3)

where θ̂(q) is the M-estimation for parameter θ and S0 is a scale estimation. Usually,

θ̂(0) is chosen as the median of primary data and

S0 = MED
{∣∣∣yi − θ̂(0)

∣∣∣
}

= MAD {yN} (6.4)

is the median of the absolute deviations from the median [1, 2].
If 0 < ψ′ 6 1, the estimate θ̂(q) converges.
One of the limitations on deviations of ψ(X) could be chosen by applying the function

ψ̃(X):

ψ̃b(X) = [ψ(X)]ab =





− b, if ψ(X) − a < b,

ψ(X), if − b 6 ψ(X) − a < b,

b, if ψ(X) − a < b.

(6.5)

The simplest variant of equation (6.5) is the range of ψ(X) in the form of the limiting
Huber M estimator [1, 2, 4, 5] for normal distribution:

ψ̃b(X) = MIN (b,MAX(X,−b)) = MIN

(
1,

b

|X|

)
=

= [X]b−b =

{
X |X| < b,

b · sgn (X) |X| > b.
(6.6)
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Another way to determine the function ψ̃(X) is to illuminate tailed values of data, for
example (as it was done by Hampel [2]), by applying the skipped median function:

ψmed(r)(X) = sgn (X) · 1[−r,r](X) =

{
sgn (X), |X| 6 r,

0, X > r.
(6.7)

Another possibility is to simplify the procedure to the simplest cut (skipped) function:

ψcut(r)(X) = X · 1[−r,r](X) =

{
X, |X| 6 r,

0, |X| > r.
(6.8)

There is a lot of different influence functions presented in literature [1, 2, 4, 5]: Hampel’s
three-part redescending function

ψα,β,r(X) =





X, 0 6 |X| 6 α,

α · sgn (X), α 6 |X| 6 β,

α
r − |X|
r − β

, β 6 |X| 6 r,

0, r 6 |X|,

(6.9)

the Andrews sine function

ψsin(r)(X) =

{
sin(X/r), |X| 6 rπ,

0, |X| > rπ,
(6.10)

the Tukey biweight function

ψbi(r)(X) =

{
X2
(
r2 −X2

)
, |X| 6 r,

0, |X| > r,
(6.11)

and the Bernoulli function

ψber(r)(X) = X2
√
r2 −X2 · 1[−r,r](X), (6.12)

It has been shown that these functions can provide good suppression of impulsive and
multiplicative noise [3, 4, 13–16]. Other influence functions are also used in literature:
the Smith function, the Huber-Collins function, the scaled logistic ML function, the
median type tangent hyperbolic function, etc.

6.2. R and L Estimators

Other types of estimators are the R and L estimators. R estimators belong to
nonparametric robust estimators based on rank calculations [1, 2, 5]. Let use two
samples for rank tests x1, . . . ,xm and y1, . . . , yn as two samples with distributions H(x)
and H (x+ ∆), where ∆ is an unknown change for bias. Suppose that Ri is the rank
of Xi in the sample of size N = m + n. The rank test of ∆ = 0 for ∆ > 0 is based on
statistics test:

S =
1

m

m∑

i=1

a (Ri). (6.13)

To find coefficients or scores ai, it is possible to use the function J :

ai = J
(

i

m+ n+ 1

)
. (6.14)
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There are another possibilities to derive the scores or coefficients ai of J , for example,

ai = J



i− 1

2
m+ n


 , (6.15)

or

ai = (m+ n)

i/(m+n)∫

(i−1)/(m+n)

J(s)ds. (6.16)

The last version is more preferable. The function J(s) is symmetrical in the sense that
J(1 − s) = −J(s) and satisfies the condition

∫
J(s)ds = 0, and coefficients ai satisfy

the condition
n∑
i=1

ai = 0. The statistical test S is the rank test for the localization of

changes. If the observations X1, . . . ,Xn and its mirror images 2Tn − X1, . . . , 2TnXn

have the same localization, the statistical test S detects the change of location and its
values are close to zero. For every J and F , all coefficients yield the asymptotic test.

For the Wilcoxon test, we find J(t) =
∣∣∣t− 1

2

∣∣∣.
The test Tn based on R estimator (6.13) corresponds to the functional T (G)[1, 2]:

∫
J
[
1

2
G(y) +

1

2
(1−G (2T (G) − y))

]
dG(y) = 0. (6.17)

The influence function IF (x;T ,F ) can be calculated via G in the form Ft,x = (1 −
− t)F + tδx in (6.17), and the derivation gives

IF (x;T ,F ) =
U(x) −

∫
U(x)f(x)dx

∫
U ′(x)f(x)dx

, (6.18)

where U(x) =
∫x
0
J ′
[
1

2
(F (y) + 1− F (2T (F ) − y))

]
f (2T (F ) − y) dλ(y).

If F is a symmetric function, the following relations take place: T (F ) = 0 and
U(x) = J (F (x)). Then,

IF (x;T ,F ) =
J (F (x))∫

J ′ (F (x)) f(x)2dx
. (6.19)

In the case of the distribution
1√
2π

e−x
2/2, the R−estimator is the median Tn =

= med {Xi} if n is odd with the functional T (G) = G−1
(
1

2

)
.

This equation for T (G) is the classical definition of median: the median is the point

x where G(x) =
1

2
. The influence function in this case with

J(t) =

{−1 t < 1/2,

1 t > 1/2
and coefficients ai =

{
1 i = (N + 1)/2,

0 another case.

From (6.16) has the form

IF (x;T ,F ) =
sgn (x)

2f(0)
. (6.20)
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So the corresponding rank estimator of Xi is the well known simplest R estimator,
which can be written as [1, 2]

θ̂med =

{
1

2

(
Xn/2 +X1+n/2

)
for n even,

X(1+n/2) for n odd,
(6.21)

where X(j) is the element with the rank j. Estimator (6.21) is known as the median

of sample of data. It is the best estimator if there is no any a priori information
about the sample distribution and moments of Xi [2, 4]. The Hodges-Lehmann

estimator J(t) =
∣∣∣t− 1

2

∣∣∣ is related to the Wilcoxon test ∆n = med {yi − xj} and

Tn = med
{
1

2
(xi + xj)

}
. For a symmetric probability data distribution, this test is

known as the most powerful asymptotically [7–9]. The Wilcoxon test has the influence

function IF (x;T ,F ) =
F (x) − 1

2∫
f 2(y)dy

[2, 5] and the coefficients ai =
2i−N − 1

2N
, where N

equals the number of values in a sample.
The correspondent rank estimator is the Wilcoxon R-estimator [4, 5, 7, 9]:

θ̂Wil = med
i6j

{
1

2

(
X(i) +X(j)

)
, i, j = 1, . . .N

}
, (6.22)

where X(i), X(j) are elements with ranks i and j, respectively. Equation (6.22) is robust
and is the best estimator when data distribution function has a symmetrical form [1, 2].

In a similar way, using different J(t), one can obtain other R estimations [10, 11].

The Ansari–Bradley–Siegel–Tukey function J(t) =
∣∣∣t− 1

2

∣∣∣ − 1

4
has the coefficients

ai =
2i− 3

2
N − 1

2N
, and the corresponding R estimator can be written in the form

θABST = med

{
X(i) i 6 N/2
1

2

(
X(i) +X(j)

)
i > N/2

}
. (6.23)

This estimator represents the use of two aforementioned estimators (6.21) and (6.22).
Suppose that the sample has the values Xi with the size N = 1, . . . , 9, the first four
ranks X(i) are defined according to (6.21), and the other ones are defined as in the
Wilcoxon estimator (6.22).

The Mood function is J(t) =
(
t− 1

2

)2
− 1

12
with ai =

i2 − i− 1

3

N 3
−

2i− 1

3
N − 1

2N 2
and

the R estimator is presented in the form

θMOOD = med

{
1

2

(
X(i) +X(j)

)
i 6 3

X(i) i > 3

}

for all i = 1, . . . ,N .

6.3. Robust Properties of Estimators

Robust properties of estimators are determined by the definition of robustness as
a property to retain the effectiveness of estimator when noise characteristics could be
changed during the experiments. Different aspects of robustness can be described by
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the influence functions (IF), change of variance function (CVF), and the breakdown

point ε∗ [1, 2, 4, 7]. Hampel [2] studied robustness by means of the influence function
IF. The IF describes the infinitesimal stability effect for asymptotic values of point x for
the estimator. The influence function IF of T in F is given by the equation:

IF (x;T ,F ) = lim
t→0

T ((1− t)F + t∆x) − T (F )

t
. (6.24)

The gross-error sensitivity of T in F can be presented in the following form:

γ∗ = sup
x

|IF (x;T ,F )| . (6.25)

It is desirable that γ∗ be finite. In this case, one can say that T is B robust, where
B means the bias. Typically, establishing that γ∗ is finite is the first step to finding
out whether the estimator is robust. This cannot have any conflict with the asymptotic
efficiency.

Another variable for calculating the robustness is the breakdown point ε∗ of the
estimator sequences {Tn;n > 1} in F and is defined as [1, 2, 4]

ε∗ = sup {ε |b (ε) < b(1)} , (6.26)

where b (ε) = lim
n

sup
F∈P

|M (F ,Tn)| and M (F ,Tn) is the median of the distributions of

[Tn − T (F0)].

6.3.1. Asymptotic Efficiency. The selection of function for the M , L and
Restimators is somewhat heuristic. Usually, the Frechet differentiation is used [1, 2].

It is supposed that probability distributions (Fθ)θ∈Θ are from a parametric family and
the functional T is the uniform Fisher estimation for θ, defined as T (Fθ) = θ, for all θ.
In this case, T is a differential in the Frechet form for F . The corresponding estimation
is asymptotically efficient in Fθ, and their influence function satisfies the equation

IF (x;Fθ,T ) =
1

I (Fθ)

∂

∂θ
( log fθ) , (6.27)

where fθ is the probability function of Fθ and I (Fθ) =
∫ ( ∂

∂θ
log fθ

)2
dFθ is the Fisher

information.
For every function of the M , L or R estimation it is necessary to solve equation

(6.27) for the bias parameter fθ(x) = f0(x− θ).
(1) For M estimator, it is sufficient to find

ψ(x) = −cf
′
0(x)

f0(x)
, c 6= 0 (6.28)

and compare it with the influence function

IF (x;F ,T ) =
ψ [x− T (F )]∫

ψ′ [x− T (F )]F (dx)
.

(2) For L estimator, it is necessary to use h(x) = x and a sufficient m as [5]

m (F0(x)) =
−1

I (F0)
( log f0(x))

n . (6.29)
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(3) For R estimations and symmetrical F0, it is sufficient to find the function J
as [2]

J (F0(x)) = −cf
′
0(x)

f0(x)
, c 6= 0 (6.30)

6.3.2. Some Examples of Robustness. Below we present different functions to
which one can apply some criteria of robustness.

Distribution: Normal
f0(x) =

1√
2π

e−x
2/2.

Estimation: M: ψ(x) = x mean, not robust with γ∗ = ∞ and ε∗ = 0,
L: m(t) = 1 mean, but not robust,
R: J(t) = Φ−1(t) estimator of normal score, robust with γ∗ = ∞ and ε∗ =

= 2Φ
(
−
√

ln 4
)
≈ 0.239.

Distribution: Logistic

F0(x) =
1

1 + e−x .

Estimation: M: ψ(x) = tanh
(
x

2

)
robust;

L: m(t) = 6t(1− t) not robust, γ∗ <∞;

R: J(t) = t− 1

2
Hodges–Lehmann, robust with ε∗ = 1− 1√

2
≈ 0.293.

Distribution: Cauchy Distribution

f0(x) =
1

π
(
1 + x2

) .

Estimation: M: ψ(x) =
2x

1 + x2
robust,

L: m(t) = 2 cos (2πt) [cos (2πt) − 1] not robust,

R: J(t) = − sin (2πt) robust.
Distribution: Minimum Information

f0(x) =

{
Ce−x

2/2 |x| 6 c,

Ce−c|x|+c
2/2 |x| > c.

Estimation: M: ψ(x) = max [−c,min(c,x)] is Huber estimator, robust with γ∗ =

= 1.037 and ε∗ =
1

2
,

L:

m(t) =

{
1

1− 2α
, α < t < 1− α,α = F0(−c),

0, another case

is α-trimmed mean,
robust with γ∗ = 1.167 and ε∗ = α,
R: The corresponding estimator [2], but with complicated description, robust.
The R estimation with the normal scores in the case of Gaussian distribution has

unlimited influence curve and has gross-error sensitivity γ∗ = ∞. This estimator is
robust but in practice it is necessary to modify it because its indicators of robustness
b (ε) and v (ε) (maximum asymptotic bias and variance) increase rapidly.
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6.4. RM Estimators

Sometimes, equation (6.3) can be simplified to the following one-step estimator
[3–5]:

θM ∼=

N∑

i=1

yiψ̃ (yi −MED {YN})

N∑

i=1

1[−r.r]ψ̃
′ (yi −MED {YN})

, (6.31)

where

·1[−r,r](X) =

{
1, |X| 6 r,

0, |X| > r,

but the optimal estimator is defined in equation (6.3) and it will be used below in the
proposed RM filtering scheme.

It is evident that formula (6.31) represents the arithmetic average of
n∑
i=1

ψ (yi −MED {yN}) evaluated on the interval [−r, r], where the parameter r is

connected with restrictions on the range of ψ(y) as it was done in the case of the

simplest Huber’s limiter type M -estimator ψ̃r(y) = min (r,max(y,−r)) = [y]r−r for the
normal distribution contaminated by another one with a heavy ‘tails’[1, 2].

Another way to derive the function ψ̃(y) is to cut the outliers from the primary
sample. This leads to the so-called lowered M -estimates. Below we use the different
influence functions defined in equations (6.9)–(6.12).

The proposal for enhancement of the robust properties of M -estimators by using the
rank estimates consists in the application of the procedure similar to the median operator
instead of arithmetic average. We present here the next iterative RM-estimators that
follow from equation (6.3) [4-6, 10]:
the Median M-type estimator

θ
(q)
MM

= MED
{
yiψ̃

(
yi − θ(q−1)

)
, i = 1, 2, . . . ,N

}
, (6.32)

the Wilcoxon M-type estimator

θ
(q)
WM

= MED
i6j

{
1

2

[
yiψ̃

(
yi − θ(q−1)

)
+ yjψ̃

(
yj − θ(q−1)

)]
,

i = 1, 2, . . . ,N ; j = 1, 2, . . . ,N} , (6.33)

the Ansari–Bradley–Siegel–Tukey estimator

θ
(q)
ABSTM

= MED





yiψ̃
(
yi−θ(q−1)

)
, 1 6 i 6

[
N

2

]
,

1

2

[
yiψ̃

(
yi−θ(q−1)

)
+

+yjψ̃
(
yj−θ(q−1)

)]
,
[
N

2

]
< i, j 6 N ; i 6 j





, (6.34)

where yi and yj are input data samples, initial estimate is θ̂(0) = MED {yN}, and {yN}
is the primary data set. Equations (6.32)–(6.34) can be also applied in processing of the
2D and 3D data [4, 5, 11–17]. Here, an input sample is formed by pixels in a sliding
window (or cube for 3D data) used in the image processing. The presented estimators
are the iterative combined RM-estimators.
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Additional way to enhance the robust properties of the RM-estimators (6.32)–(6.34)
considered here is the use of the iterative form of such estimators that follows from
equation (6.3).
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Chapter 7

LINEAR AND NONLINEAR FILTERING TECHNIQUES

In this chapter, a short review of different kinds of frequently used algorithms is
presented. In most cases, we analyze only the algorithms connected with order statistics
as the most promising approach.

7.1. Trimmed Mean Filters

Usually, this type of filters can be utilized to suppress both Gaussian and impulsive
noises [1, 2].

7.1.1. Filter α-trimmed mean. This filter can be designed by ordering the data
sample and cutting the tailed values before number r and after n− s, i.e., X(1), X(2), . . .
. . . ,X(r) and X(n−s+1), X(n−s+2), . . . ,X(n) [3, 4]. Then,

θαTM =
1

n− r − s

n−s∑

i=r+1

X(i). (7.1)

The α-trimmed mean filter is one compromise between median and classical filters.

7.1.2. Filter KNN. This KNN filter (K-nearest neighbor filter) [5] is the modifica-
tion of the trimmed mean filter and is the mean of Kelements for 1 6 K 6 n with the
values nearest to central pixel X∗ in the sliding window. This helps to preserve edges
and fine small details in an image. This filter can also help to suppress impulsive noise.
One adaptation of such a filter is [4]:

θKNN =

n∑

i=1

aiXi

n∑

i=1

ai

, (7.2)

where θKNN represents the KNN modified filter and

ai =

{
1, if |Xi −X∗| 6 T ,

0, another case.

If threshold T is equal to twice of noise deviation σ, the KNN modified filter is the same
as Sigma filter [6].

7.2. L Filters

These filters are usually employed to suppress complex noises (impulsive, Gaussian,
and multiplicative).
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7.2.1. Filter L. This filter has the structure very similar to the lineal FIR filters [7]:

θL =
n∑

i=1

ai ·X(i), (7.3)

where X(i), i = 1,. . .,n, are a sequence of ordered data and ai, i = 1,. . .,n, are the filter
coefficients, e.g., as in following equation:

ai =

i
n∫

i−1
n

h(λ)dλ

1∫

0

h(λ)dλ

, (7.4)

where h: [0, 1] → ℜ satisfies the condition integral
∫1

0
h(λ)dλ 6= 0 and

n∑
i=1

ai = 1.

For every known distribution, it is easy to find the filter’s coefficients optimizing
the MSE of the filter. For the uniform, Gaussian, and Laplacian distributions, the filter
coefficients are presented in Table 7.1 [1].

Tab l e 7.1. Optimal coefficients for L filter 3× 3.

Uniform Gaussian Laplacian

a1 0.5 0.11 0.019

a2 0.0 0.11 0.0291

a3 0.0 0.11 0.0697

a4 0.0 0.11 0.2380

a5 0.0 0.11 0.3647

a6 0.0 0.11 0.2380

a7 0.0 0.11 0.0697

a8 0.0 0.11 0.0291

a9 0.5 0.11 0.019

7.2.2. C- and Lλ -Filter [8]. This filter is a special case of the Lλ filter [9] and
includes FIR (finite impulse response) and L filter in the following way:

• It is an L filter with the coefficients of Xi depending on the temporal position in
the filter window.

• It is a C FIR filter with the coefficients of Xi depending on the rank in the window.
So, for filter C n× n and data

(
X(1),X(2), . . . ,X(n)

)
, it can be found that

θC =

n∑

i=1

c (R (Xi) , i)Xi

n∑

i=1

c (R (Xi) , i)

, (7.5)
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where R (Xi) is the ranked Xi, c (R (Xi) , i) is filter’s coefficient according to the rank
of R (Xi),

C =




12times︷ ︸︸ ︷
aT , . . . , aT , bT ,

12times︷ ︸︸ ︷
aT , . . . , aT




is the matrix of coefficients for a 5× 5 window and coefficients of vectors a and b are
defined below in Tables 7.2 and 7.3.

Tab l e 7.2. Coefficients of vector a.

a1, a25 0.00550 a7, a19 0.00314

a2, a24 0.00335 a8, a18 0.01064

a3, a23 −0.00427 a9, a17 0.02907

a4, a22 −0.00101 a10, a16 0.06499

a5, a21 −0.00008 a11, a15 0.11835

a6, a20 0.00065 a12, a14 0.17195

a13 0.19541

Tab l e 7.3. Coefficients of vector b.

b1, b25 0.00550 B5, b21 −0.00008

b2, b24 0.00335 b6, b20 0.00065

b3, b23 −0.00427 b7, b19 0.00314

b4, b22 −0.00101 b8,...,18 6.0

7.2.3. Filter LMS-L (Least Mean-Square L-Filter). The LMS-L filter [10] is an
extension of the L filter for nonstationary signals.

The location-invariant LMS-L filter [10] was designed for the cases when signals
are contaminated by additive white noise:

â′(i+ 1) = â′(i) + µe(i)x′
L(i), (7.6)

where e(i) = x(i) − θL(i) is the error of estimation in the pixel i, x is the original
image, and θL = aT (i)xL(i) is the output of filter L. Parameter µ is chosen in the

interval 0 < µ <
2

3 · tr [RL]
, where tr [RL] is the trace of the correlation matrix of

sample RL = E
{
xL(i)xTL

}
of ordered pixel values.

The coefficients form the vector

a(i) =
(
aT1 (i)

∣∣av(i)
∣∣aT2 (i)

)T
, (7.7)

where v = (n+ 1)/2, and a1(i) and a2(i) are vectors of the dimension (n − 1)/2 × 1:

a1(i) = (a1(i), . . . , av−1(i))
T

and a2(i) = (av+1(i), . . . , an(i))
T
. The coefficient for the

central pixel is av(i) = 1− 1Tv−1a1(i) − 1Tv−1a2(i).

5 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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The input vector is defined as xL(i) =
(
xTL1(i)

∣∣x(v)(i)
∣∣xTL2(i)

)T
. So a′(i) is the

vector of the L filter’s coefficients

a′(i) =
(
aT1 (i)

∣∣aT2 (i)
)T

(7.8)

and x′
L(i) is the (n− 1) × 1 vector

x′
L(i) =

[
xL1(i) − x(v)(i)1v−1

xL2(i) − x(v)(i)1v−1

]
. (7.9)

In practice, the pure image (free of noise) usually cannot be observed, so equation (7.6)
is transformed to the following one:

â′(i+ 1) = â′(i) + µy(i)x′
L(i). (7.10)

Another version of the LMS-L filter is the unconstrained LMS-L filter, where the
coefficients are defined as

â(i+ 1) = â(i) + µe(i)xL(i). (7.11)

Normalized LMS-L filter [10] uses a modified equation (7.11) where parameter µ is
changed as follows:

â(i+ 1) = â(i) +
µ0

‖xL(i)‖2
e(i)xL(k), (7.12)

where µ0 must be taken in interval 0 < µ0 6
2

3
.

The signed error LMS-L filter, according to the MAE (mean absolute value)
criterion, can be written as

â(i+ 1) = â(i) + µ sgn [e(i)]xL(i). (7.13)

The equation presented above uses the vector of ordered sample. The estimation of error
can be realized in the form

e′(i) = X(i) − âT (i+ 1)xL(i) = e(i) − µ sgn [e(i)]xTL(i)xL(i), (7.14)

where µ(i) =
µ0|e(i)|

x
T
L(i)xL(i)

, 0 < µ0 < 1, and |e′(i)| is (1− µ0) · |e(i)|.

7.3. Weighted Median and Order Statistics Filters

7.3.1. Weighted Median Filters. The weighted median filter has better preserva-
tion of edges in comparison with the standard median filter but a worse impulse noise
suppression.

The definition of this filter is

θWM = MED {ai♦Xi, i = 1, . . . ,n} , (7.15)

where operator ♦ means that the element Xi is used ai times and ai are the filter
coefficients ai > 0 for i = 1, 2, . . . ,n. Examples of weighted filters are [11, 12] the filter
with matrix a1 and the Center Weighted Median Filter with matrix a2:

a1 =




1 1 2 1 1
1 3 4 3 1
2 4 11 4 2
1 3 4 3 1
1 1 2 1 1


 and a2 =




1 1 1 1 1
1 1 1 1 1
1 1 13 1 1
1 1 1 1 1
1 1 1 1 1


. (7.16)
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7.3.2. Ranked-Order and Weighted Order Statistics Filters. Ranked-Order

filters are the modifications of median filter. The output of the filter is presented by the
window of the following type:

RO (X1,X2, . . . ,Xn; r) = X(r). (7.17)

Weighted Order Statistics Filters can be defined in a similar way:

WOS (X1,X2, . . . ,Xn; a, r) = order

statistics r of {a1♦X1, a2♦X2, . . . , an♦Xn} . (7.17a)

7.3.3. Multistage Median Filter. This filter type allows one to realize fast
calculation of median. It uses different stages of median filters to calculate the median
of medians.

Separable two-dimensional median filter [13] is a modification of the median filter
and can calculate the output very fast. It has two stages. In the first stage, it calculates
horizontal medians, and in second stage, it calculates the median in the vertical direction.
Multistage median filters are presented as follows:

MSM1 = MED {Xm+1,m+1,h− med, v − med} ,
MSM2 = MED {Xm+1,m+1, d45− med, d135− med} ,
MSM3 = MED {h− med, v − med, d45− med, d135− med} ,
MSM4 = MED {Xm+1,m+1,h− med,

v − med, d45− med, d135− med} ,
MSM5 = MED {Xm+1,m+1,MED {Xm+1,m+1,h− med, v − med} ,

MED {Xm+1,m+1, d45− med, d135− med}} ,
MSM6 = MED {Xm+1,m+1, c− med,x− med} ,

(7.18)

where m is found from the equality z = 2m+ 1 and z × z = n.

7.3.4. Adaptive Center Weighted Median Filter. This filter uses an adaptive
operator to estimate differences between an actual pixel and outputs of the central
median filter with variations of weights in the central pixel. The filter is defined as [14]:

θACWM =

{
θ1CWM dk > Tk,

X∗ another case,
(7.19)

where dk = |θmCWM −X∗| are the differences between the median filter and the
central weighted median filter, θmCWM = MED {Xi,m♦X∗} is the central weighted
median filter, Tk = s · MAD + δk are the thresholds of the filter, and MAD =
= MED

{∣∣Xi − θ1CWM

∣∣}. Parameter s determines the necessary robustness and varies
in the interval 0 6 s 6 0.6; δk = [δ0, δ1, δ2, δ3] = [40, 25, 10, 5] [14].

7.3.5. LUM Filter. The LUM (Lower-Upper-Middle) filter is a filter with selec-
tions of ranks and has been proposed to preserve edges [15]:

θLUM =





X(s) if X∗ < X(s),

X(t) if X(t) < X∗
6 tL,

X(n−t+1) if tL < X∗
6 X(n−t+1),

X(n−s+1) if X(n−s+1) < X∗,

X∗ another case,

, (7.20)

5*
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where tL =
X(t) +X(n−t+1)

2
for 1 6 t 6 k + 1, parameters s and t are found in the

interval 1 6 s 6 t 6 k + 1, and X∗ is the median of the data sample.

7.3.6. Rank-Ordered Mean (ROM) Filter. The ROM filter is designed to sup-
press a noise of complex mixture. For a 3× 3 window, the central element is X5, so the
output of ROM filter for other ordered samples is defined as:

ROM(Xi) =
X4 +X5

2
. (7.21)

Also, an impulse detector that determines noisy pixels is used, which calculates the
differences

dk =

{
X(k) −X∗, X∗

6 ROM(Xi),

X∗ −X(9−k) X∗ > ROM(Xi).
(7.22)

Four thresholds T1 < T2 < T3 < T4 are used for comparing with them the differences:

dk > Tk, k = 1, . . . , 4. (7.23)

Finally, Signal-Dependent Rank-Ordered Mean Filter operates according to following
equation:

SDROM(Xi) =

{
ROM(Xi) dk > Tk,

X∗ another case.
(7.24)

The optimal values Tk can be chosen in the intervals T1 6 15, 15 6 T2 6 25, 30 6 T3 6

6 50, and 40 6 T4 6 60.
Training can be used to obtain the optimal parameters according to the MSE

criterion, which gives

αi =

−
∑

i:s(i)=n

(X(i) −ROM(i)) (ROM(i) − V (i))

∑

i:s(i)=n

(X(i) −ROM(i))2
, (7.25)

where i = 1, 2, . . . ,M , V (i) is the training image, βi = 1− αi, and M = 1296 is number
of samples. . .

Finally, the SDROM filter [16] can be defined by the formula

SDROM(Xi) = αs(i)X(i) + βs(i)ROM(Xi). (7.26)

7.3.7. Vector Median Filter. This filter has been designed for multichannel
images, e.g., color ones.

The output of the filter is defined as a vector with the minimum distance sum and
can be written as [17]

x
(l)
VM = FVM

(
X(l)

)
= x

(l)
1 , (7.27)

where x
(l)
1 is a value with rank one found after calculating all the distances d

(l)
i according

to the scheme d
(l)
(1) 6 d

(l)
(2) 6 · · · d(l)

(n), and x
(l)
1 corresponds to the distance d

(l)
(1). The

distance x
(l)
i is calculated as

d
(l)
i =

N∑

j=1

Fd
(
x

(l)
i ,x

(l)
j

)
, (7.28)

where Fd is usually a L2 norm. Another type of such filters, the directional filter uses
the Fd norm defined as the angles between vectorial pixels:
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Fd
(
x

(l)
i ,x

(l)
j

)
= arccos


 x

(l)T

i x
(l)
j∥∥∥x(l)

i

∥∥∥
∥∥∥x(l)

j

∥∥∥


 . (7.29)

This technique and its modifications will be used below in filtering of multichannel
multidimensional images.

7.4. Examples of Data-Dependent Filters

7.4.1. Lee filter. Lee [18] proposed the method of local statistics in the LLMMSE

(local linear minimum mean square error estimator) [18, 19]:

LLMMSE =

(
1− σ2

n

σ2
s

)
X∗ +

σ2
n

σ2
s

m, (7.30)

where σs is the RMS of the original signal Xi, σn is the RMS of noise, X∗ — a central
pixel, m is the mean of a sample, and 0 6 σ2

n

/
σ2
s 6 1. For homogeneous areas, this filter

operates as a mean- squares filter, but, if the changes are large near the central pixel, it
is not practically changed. The previous equation can be transformed as follows:

LLMMSE =
σ2

s

σ2
s + σ2

n

X∗ +

(
1− σ2

s

σ2
s + σ2

n

)
m, (7.31)

where the MAD can be used to estimate σs of the signal part.

7.4.2. Modified Frost Filter. The Frost filter has been designed as a filter to
suppress multiplicative noise [20]:

XFROST =
∑

p,q

θs2ijexp
{
−as2ij(|p− i| + |q − j|)

}
Xpq, (7.32)

where p and q show the pixels in a sliding filtering window, Xpq is a pixel contaminated
by the noise, a = 4/

(
σ2
µ

√
N
)
, σ2

µ is the variance of multiplicative noise, N is the

number of pixels, s2ij = σ2
ij/I

2

ij , Iij and σ2
ij are the mean and local variance, and θ is

normalization factor.
The equation can be written in another form as

XFROST =
∑

pq

b∆p∆q
(
s2ij
)
Xpq, (7.33)

where b∆p∆q
(
s2ij
)

= θs2ij exp
{
−as2ij(∆p+ ∆q)

}
.

Modified Frost filter is based on the previous formula but depends of sub filters and
thresholds:

XMFROST =





1

M

∑

p,q

B0
∆p∆qXpq,0 6 s2ij < t1,

1

M

∑

p,q

B1
∆p∆qXpq,t1 6 s2ij < t2,

1

M

∑

p,q

B2
∆p∆qXpq,t2 6 s2ij < t3,

1

M

∑

p,q

B3
∆p∆qXpq,t3 6 s2ij <∞,

(7.34)
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where M = 64 for a 5x5 window, t1 = 0.41, t2 = 1.02, t3 = 1.52, and the coefficients
are defined as follows:

B0
∆p∆q =




2 2 3 2 2
2 3 3 3 2
3 3 4 3 3
2 3 3 3 2
2 2 3 2 2


, B1

∆p∆q =




1 1 3 1 1
1 3 5 3 1
3 5 8 5 3
1 3 5 3 1
1 1 3 1 1


,

B2
∆p∆q =




0 1 2 1 0
1 2 6 2 1
2 6 16 6 2
1 2 6 2 1
0 1 2 1 0


, B3

∆p∆q =




0 0 0 0 0
0 0 8 0 0
0 8 32 8 0
0 0 8 0 0
0 0 0 0 0


.

(7.35)

7.5. RM Filtering Technique

7.5.1. Some classical filters. It is easy to define the R filter, using the genetic
equation for the mean value in a sliding window in the image [2, 21]:

ê(i, j) =
1

(2K + 1)2

K∑

m=−K

K∑

n=−K

x(i−m, j − n), (7.36)

where ê(i, j) is the estimation of the image e, x(i, j) is the image corrupted by Gaussian
noise, (2K + 1)2 is the filter window size with i = 1, . . . ,M , j = 1, . . . ,N , and MxN
is the image size. Filter (7.36) is known as a standard mean filter or lineal standard
filter [21].

The R filter can be found by changing the arithmetic mean by the rank operation. By
applying equation (6.21) to (7.36), it is easy to obtain the standard median filter [21–25]

êmed = med {q(i+m, j + n), m,n = −K, . . . ,K} , (7.37)

where med {·} denotes the median of all pixels in the filter window of size (2K + 1)2.
Similarly, the Wilcoxon filter could be found from estimator (6.22) [2, 21] as

êWil = med
{
q(i+m, j + n) + q (i+m1, j + n1)

2

}
, (7.38)

where m 6 m1, n 6 n1 and m, n, m1, n1 = −K, . . . ,K.
Median filter (7.37) has sufficient properties in applications of image processing

when any a priory information is absent. On the contrary, Wilcoxon filter (7.38) can
give a good estimation when the data distribution has a symmetric form. It is known
[2] that its robust properties are not sufficient in the case of impulsive noise since it
cannot suppress it sufficiently. We propose to modify this filter in order to increase
its robustness [2, 22, 25, 26]. The standard technique in this case is the operation of
trimming or winsorization [2, 22]. So, in the ordering of data in the sample Xj with
j = 1, . . . ,K, the elements that have the rank number less than αK and more than
K − αK should be eliminated. The volume of eliminated data is defined by the cut of
«trimming» parameter α, varying from 0 to 0.5. Applying this concept to median filter
(7.36) it is easy to write the α-trimmed mean (α-TM) filter [10]

êα−TM (i, j) =
1

L− 2αL

L−αL∑

k=αL

Rq(k), (7.39)
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where L = (2K + 1)2 and Rq(k) represents the value of the pixel having the rank k
among all elements in the filter window q(i+m, j + n), m,n = −K, . . . ,K.

By applying sample censorization to Wilcoxon estimator (6.22) and rank operation
to generic filter (7.36), one can find the Wilcoxon α-TM filter [25]

êWα−TM (i, j) = med
k6l

{
Rk +Rl

2
, k, l = αL, . . . ,L− αL

}
, (7.40)

where L = (2K + 1)2.

7.5.2. Examples of RM Filters. The design of the M and RM filters is based on
genetic equation (7.36) and equations (6.32), (6.33), and (6.34). The standardM filter
(STM) [2, 22, 25] can be found by using the influence function ψ(X) defined in (6.6)
and applying the winsorization:

êSTM (i, j) =
1

2K + 1

K∑

m=−K

K∑

n=−K

ψ̃ [g(i+m, j + n)], (7.41)

where

ψ̃ (g(i, j)) =





êmed(i, j) − b, g(i, j) < b,

q(i, j), |g(i, j)| 6 b,

êmed(i, j) + b, g(i, j) > b,

and g(i+m, j + n) = q(i+m, j + n) − êmed(i, j).
Applying the RM estimator from (6.32) in equation (7.41), one can find the median

standard filter. Employing RM estimator (6.33) again, we obtain the Wilcoxon M type
filter (W-STM) [25]:

êW−STM (i, j) = med
{
yk + yl

2
, k 6 l

}
,

−→y =
{
ψ̃ [g(i+m, j + n)] ,m,n = −K, . . . ,K

}
,

(7.42)

where k, l = −K, . . . ,K, the vector −→y denotes the data intermediate sample, and
ψ̃ [g(i, j)] is the influence function from equation (7.42).

Applying the simple cut influence function (6.6) in the equation (6.31) and making
some modifications in equation (7.41), we obtain the cut M filter:

êCM (i, j) =
1∑

ψcut [g(i+m, j + n)]
×

×
K∑

m=−K

K∑

n=−K

ψcut [g(i+m, j + n)] · q(i+m, j + n), (7.43)

where

ψcut [g(i, j)] =

{
1, g(i, j) = |q(i, j) − med {q(i+m, j + n) 6 b}

m,n = −K, . . . ,K,
0, another case.

.

Using RM estimator (6.33) in equation (7.43), we obtain the Wilcoxon cut filter

(WCM) [25]

êWCM (i, j) = med
{
yk + yl

2
, k 6 l

}
. (7.44)
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Here,

−→y = {q(i+m, j + n) : |q(i+m, j + n) − med {q (i+m1, j + n1)}| 6 b,

m,n,m1,n1 = −K, . . . ,K} ,
where the vector −→y denotes a sample of the intermediate data.

Finally, applying RM estimator (6.32) to equation (7.44), we obtain the median cut

filter (MCM) [28-30]
êMCM (i, j) = med {−→y } , (7.45)

where the vector −→y is defined as in the previous equation. The same results can be
obtained if we use function (6.8) in (6.32) and make necessary substitutions in (7.36).

7.5.3. RM-KNN Type Filters. Robustness can be increased by different methods:
censorization or others [22, 26, 28]. A well-known way to enhance the filtration quality
by preservation of image details consists in the use of K sample elements with the
values close to that of the central pixel in a sliding filtration window. In this case, the
aforementioned filtering algorithm (K-nearest neighbor) can be used:

êKNN (i, j) =
1

K

L∑

m=−L

L∑

n=−L

ψ (x(i+m, j + n))x(i+m, j + n), (7.46)

where

ψ (x(i+m, j + n)) =





1, if x(i+m, j + n) is one of the K valures

the most closed to x(i, j) in the window,

0, another case,

and m,n = −L, . . . ,L.
In order to improve robustness of KNN standard filter (7.46), we substitute the

calculated of arithmetic mean by RM algorithms (6.32) and (6.33) as the first step of
estimation. The following two RM-KNN filters can be derived [29–31]:
Median type-M KNN filter (MM–KNN)

êMM−KNN (i, j) = med {xKNN (i+m, j + n)} , (7.47)

and Wilcoxon type-M KNN filter (WM–KNN).

êWM−KNN (i, j) = med
{
xKNN (i+m, j + n) + xKNN (i+m1, j + n1)

2

}
, (7.48)

where xKNN (i + m, j + n) and xKNN (i + m1, j + n1) are the K pixels in the filter
window that have the nearest values to the central pixel x(i, j), and m,n,m1,n1 = −
−L, . . . ,L. It is easy to derive similar algorithms in the cases when other R-estimators
are used: the Mood and Ansari–Bradley–Siegel–Tukey filters.

To improve the robustness of the KNN filter, near the edges of image objects, we
should make some adjustment: first, in the number of the nearest pixels, which have to
be chosen in accordance to the local deviation of sample data in window, and second, in
the suppression of impulsive noise. To do this, an iterative procedure has been proposed.

The resulting filter, named lineal type-M KNN (LM–KNN) [30, 31], is defined as
follows:

ê
(q)
LM−KNN (i, j) =

1

Ks

L∑

m=−L

L∑

n=−L

ψ(q) (x(i+m, j + n))x(i+m, j + n), (7.49)
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where

ψ(q) (x(i+m, j + n)) =





1, if x(i+m, j + n) is one of Ks

valures closed to ê
(q−1)
KNN (i, j),

0, another case,

and
Ks = Kmin + a · S (x(i, j)) 6 Kmax,

S (x(i, j)) = med {|x(i, j) − x(i+m.j + n)|} . (7.50)

The initial estimation is ê
(0)
KNN (i, j) = x(i, j); a controls the filter sensitivity for a better

detection of edges; Kmin is the minimum neighbor number for elimination of noise;
Kmax is the number for restoration of the edges and fine details; S (x(i, j)) is the pulse
detector based on the median of the differences between the central pixel and another
pixels containing in the filter window. If the value of S (x(i, j)) is small, the pixel can
be recognized as clear of noise; in the opposite case, if S (x(i, j)) is large, the pixel is
recognized as contaminated by impulsive noise. The iterations should be ended when
ê(q)(i, j) = ê(q−1)(i, j). One can see that filter (7.53) is the extended form of the standard
KNN filter.

Applying RM estimation (6.32) in (7.49), we can find the final version of the RM–

KNN filter for preservation of details and impulse noise suppression. This filter is named
the Median type-M KNN filter (MM–KNN) and determined as follows [31]:

ê
(q)
MMKNN (i, j) = med

{
g(q)(i+m, j + n)

}
, (7.51)

where g(q)(i +m, j + n) are some Kclose pixels weighted according to function ψ(X)
from (7.6) and having nearest values in the sliding filtering window to the estimate

ê
(q−1)
MMKNN (i, j) in the previous step; the initial estimate is ê

(0)
MMKNN (i, j) = x(i, j);

x(i, j) is the original image pixel degraded by impulsive noise or the central pixel of
the filtering window; (2L + 1)2 is the filtering window size with m,n = −L, . . . ,L;
ê
(q)
MMKNN denotes the estimate in the iteration q; and q is the iteration index of actual

iteration. The iterations end when the actual estimate ê
(q)
MMKNN equals the previous

estimation ê
(q−1)
MMKNN (i, j). Usually, as it has been found in simulations, it takes 3 or 4

steps to satisfy this condition.
The value Kclose(i, j) is the actual number of the nearest neighboring pixels. It

reflects the local data activity and the presence of impulsive noise [31]:

Kclose(i, j) = [Kmin + a ·Ds (x (i, j))] 6 Kmax, (7.52)

Ds (x(i, j)) =
med {|x(i, j) − x(i+m, j + n)|}

MAD {x(i, j)} + 0.5
MAD {x(i, j)}

med {x(i+ k, j + l)} , (7.53)

where a controls the filter sensitivity in order to have satisfactory capability of detecting
fine details; Kmin is minimum number of neighboring pixels to remove noise; Kmax is
maximum number of neighboring pixels for restoring edges and fine details; DS (x(i, j))
is the proposed pulse detector, which has a better capability of detection as compared to
that given by (7.50); and MAD is the median of the absolute deviations of the median
defined in Chapter 6: MAD {x(i, j)} = med {|x(i+m, j + n) − med {x(i+ k, j + l)}|}.

Pulse detector DS (x(i, j)) (7.53) was proposed in accordance with the following
reasoning: the MAD is the most robust estimator for standard deviation, usually used
as a scale estimator and sometimes as a local estimator of the standard deviation of the
signal. If the value of MAD is small, the pixel is not contaminated by noise. In the
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opposite case, when the value MAD is large, the pixel is degraded by impulse noise.
The actual number of the nearest neighboring pixels Kclose(i, j) (7.52) is determined
with the only purpose to give satisfactory detail preservation for the filter, so it was
proposed to take into account the minimum number of neighboring pixels Kmin used in
calculations to remove impulse noise. The operation a ·Ds (x(i, j)) represents a quantity
that allows one to identify whether the pixel is of the impulsive noise or is from details
of an image.

In a similar matter, as in case of the MM–KNN filter (7.51), the Wilcoxon M-type

KNN filter (WM–KNN) can be obtained from estimation RM (6.33) in (7.49) as follows
[30, 31]:

ê
(q)
WMKNN (i, j) = med

{
g(q)(i+m, j+n)+g(q)(i+m1, j+n1)

2

}
, (7.54)

where g(q)(i+m, j + n) and g(q)(i+m1, j + n1) are the sets of Kclose pixels with the
weight according to the influence function ψ(X), nearest in their values to the estimate

at the previous step ê
(q−1)
WMKNN (i, j); the initial estimate is ê

(0)
WMKNN (i, j) = x(i, j);

x(i, j) is the original image; ê
(q)
WMKNN denotes the estimate on iteration q; and q

is the index of the current iteration. The iterations end when the current estimate
ê
(q)
WMKNN equals the previous estimate ê

(q−1)
WMKNN (i, j); Kclose(i, j) is defined by (7.52);

and (2L+ 1)2 is the size of the filter with m 6 m1, n 6 n1 y m,n,m1,n1 = −L, . . . ,L.
MM-KNN filter (7.51) has a good capability in reduction of impulse noise and fine

detail preservation, due to its robustness and the choice of the influence function, but
it cannot suppress Gaussian multiplicative noise well when the variations are large. To
cope with this problem, the M-filter has been proposed as a second-stage filter [32, 33].

7.5.4. Robust M Filter. The M-filter provides good fine detail preservation and is
capable to remove spikes and suppress multiplicative noise [32, 33]. This filter uses the
following influence function in the M estimator:

ψ(X) =

{
X,

∣∣X − θ(0)
∣∣ 6 b · med {X},

0, another case,
(7.55)

where X is a data vector in a filter window, θ(0) = ê
(q)
MMKNN (i, j), and med {X} is the

median of the pixels in the window.
The M type filter using the influence function defined above can be written

as [32, 33]:

êM (i, j) =

L∑

m=−L

L∑

n=−L

x(i, j)ψ′
{
x(i+m, j + n) − ê(0)(i, j)

}

L∑

k=−L

L∑

l=−L

ψ′
{
x(i+m, j + n) − ê(0)(i, j)

} , (7.56)

where

ψ′
{
x(i+m, j + n) − ê(0)(i, j)

}
=





1,
∣∣x(i+m, j + n) − ê(0)(i, j)

∣∣ 6

6 b · med {x(i+m, j + n)} ,
0, another also,

is the influence function in the case when the simple cut function (6.8) is used. The
influence function ψ(X) from (6.8) should be changed in M filter (7.56) if other influence
functions (6.7), (6.9)–(6.12) are used. The value med {x(i+m, j + n)} is the median
of the pixels nearest to the central one in the window and b controls the suppression
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of multiplicative noise. It has been found in simulations that the optimal value is 2.
Also in (7.56), (2L+ 1)2 is the filter window size with m,n = −L, . . . ,L and ê(0)(i, j) =
= ê(q)

MMKNN
(i, j) is the initial estimation.

The M filter (7.56) has a good noise suppression performance in the case of

multiplicative noise but, at the same time, detail preservation is satisfactory only when
the noise level is not too high. Finally, we have proposed an adaptive scheme, similar
to that used in the local statistics Lee filter [4, 6], combining two filters:

êLEE =
σ2

x

σ2
x + σ2

n

X∗ +

(
1− σ2

x

σ2
x + σ2

n

)
m, (7.57)

where the following outputs of filter estimates êMMKNN and êM are used [32, 33]:

êRM−CAS(i, j) = êMMKNN (i, j) · θ̂W (i, j) + +
[
1− θ̂W (i, j)

]
· êM (i, j), (7.58)

θ̂W (i, j) = 1−
(
c

êM (i, j)

med {|êM (i, j) − x(i+m, j + n)|}

)2

. (7.59)

In (7.59), θ̂W (i, j) is a robust estimator of local data activity; c controls the fine detail
preservation, and êRM−CAS(i, j) is the output of the proposed two-stage filter.

The resulting image filter (7.58) is named the RM cascade filter and represents two
filters connected in cascade to preserve fine details: MM-KNN filter (7.51) to remove
impulsive noise and M filter (7.56) [33], which suppresses multiplicative noise. So, this
filter is very similar to the well-known Sigma filter [6] for detail preservation with an
exception that it uses local weighted adaptive data. The outputs of these filters are
mixed in a manner similar to the Lee filter [4], which takes the relation of local data
activity of the image to realize better preservation of fine details in the image.

In order to determine the noise suppression properties and compare the qualitative
characteristics of various filters, namely, the 3x3 Cascaded RM-filters with simple cut,
Hampel’s three part redescending, Andrew’s sine, Tukey biweight, Bernoulli influence
functions, 3x3 normalized least-mean-squares L (NLMS-L) [10], 3x3 rank-order mean
(ROM) [16], 5x5 modified Frost [20, 31], and 3x3 vector median rational hybrid
(VMRH) [34] filters were simulated. The reason of choosing these filters was to compare
the performance of the filters proposed above with that of various known filters and
demonstrate their advantages.

The commonly used 256×256 grayscale test images «Airfield», «Bridge», «Mandrill»,
and «Lena» were corrupted by an impulse noise with 20% of spike occurrence mixed
with multiplicative Gaussian noise with the variance of 0.1. The choice of these images
is justified by different texture character of them. Thus, whereas the images «Bridge»
and «Mandrill» have large areas similar to noise structure, the other images such as
«Airfield» have geometrically restricted objects and «Lena» is a portrait type image.
Therefore, a good performance of the proposed filters in filtering these images could
justify the possibility to decrease noise influence and preserve fine details in other images
with a similar structure.

The PSNR and MAE performances for all investigated filters are presented in
Table 7.4, which shows that the Cascaded RM-filters are preferable because of better
PSNR and MAE performances in comparison with the NLMS-L and ROM filters.

The performances of the filters are almost similar to those of the modified Frost and
VMRH filters but with better detail preservation. Figure 7.1 presents the processed
images for «Airfield» image, demonstrating better detail preservation attained by the
proposed filters in comparison with other techniques.
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Tab l e 7.4. PSNR (in dB) and MAE values for different images degraded by impulsive noise
with 20% of spike occurrence mixed with multiplicative noise having variance σ2

ε of 0.1 for
different filters.

Nonlinear Filters
Airfield Bridge Mandrill

PSNR MAE PSNR MAE PSNR MAE

3x3 NLMS-L 14.94 37.20 14.35 42.77 14.63 38.96

3x3 ROM 17.41 26.63 16.89 28.57 16.04 31.03

5x5 Modified FROST 20.03 18.92 19.21 21.60 18.24 24.53

3x3 VMRH 20.14 18.21 19.30 20.43 18.21 23.74

3x3 Cas. MM (Simple) 19.80 17.30 18.74 20.49 17.21 24.84

3x3 Cas. WM (Simple) 20.37 17.23 19.37 20.38 18.02 24.43

3x3 Cas. ABSTM (Simple) 20.44 16.99 19.53 20.05 18.10 24.10

3x3 Cas. MM (Hampel) 20.77 16.37 19.86 19.38 18.29 23.54

3x3 Cas. MM (Andrew) 20.86 16.24 19.85 19.31 18.31 23.54

3x3 Cas. MM (Tukey) 20.88 16.18 19.85 19.33 18.32 23.51

3x3 Cas. MM (Bernoulli) 20.89 16.18 19.85 19.32 18.31 23.52

Fig. 7.1. Comparative results of suppression of impulsive and multiplicative noise in the «Airfield»
image. a) Original image, b) Degraded image by mixture of impulsive noise with 20% of spike
occurrence and multiplicative noise of variance 0.1, c) Restored image with the NLMS–L filter, d)
Restored image with the ROM filter, e) Restored image with the Modified Frost filter, f) Restored
image with the VMRH filter, g) Restored image with the Cascaded MM-filter (Bemoulli), h)

Restored image with the Cascaded WM-filter (Bemoulli).

To investigate the performance of the proposed filters in the presence of noise
with different intensity level, the 256×256 standard test grayscale image «Lena» was
corrupted by impulsive noise with occurrence rate ranging from 1 to 20% mixed with
multiplicative Gaussian noise having variances σ2

ε equal to 0.05, 0.1 and 0.25.
The PSNR and MAE performances for the comparative NLMS-L, ROM, modified

Frost, VMRH filters and Cascaded RM- (MM- and WM-KNN) filter with Andrew’s
sine influence function are presented in Table 7.5.
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Fig. 7.2. Comparative results of despeckling for real-life SAR image. a) Original part of
«Pentagon» image, resolution 1 m, source: Sandia National Lab., b) Despeckled image with the
Modified Frost filter, c) Despeckled image with the VMRH filter, d) Despeckled image with the

Cascaded ABSTM-filter (Bernoulli).

Here, we present only the use of one influence function in the proposed two filters,
since the PSNR and MAE performances are very similar when other influence functions
and other filters are used. In this test, we found out that the modified Frost filter is the
best filter in comparison with the NLMS-L, ROM, and VMRH filters since it provides
better PSNR and MAE performances when the impulsive noise percentage is 5% or
less, approximately. The advantage of the proposed algorithm is that it does not use
training data and parameters of the proposed filter can be treated as constants. It has
been found out that the parameters of the proposed algorithm provide the optimal values
of the PSNR and MAE criteria. Different test images have been degraded by mixture
of impulsive and multiplicative noise.

Finally, we have standardized these parameters as the constants in order to realize
the real-time implementation of the proposed filters [32, 33].

So, the proposed filter can suppress a mixture of complex noise and can preserve
small-size details well as compared with other nonlinear filters described in literature,
when impulsive noise percentages are 5% or more (Table 7.5).

To demonstrate the performances of the proposed filtering scheme, we applied it to
filtering of the real-life SAR image, which naturally has multiplicative speckle noise.
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Tab l e 7.5. PSNR (in dB) and MAE values for «Lena» image degraded by impulsive noise with
occurrence rate ranging from 1 to 20% mixed with multiplicative noise variance σ2

ε having of
0.05, 0.1 and 0.25 for different filters.

Mixed Noise Nonlinear Filters

multiplicative
noise variance

impulsive noise
percentage

3x3 NLMS-L 3x3 ROM 5x5 Modified
FROST

PSNR MAE PSNR MAE PSNR MAE

σε=0.05

1 21.76 16.38 22.76 13.89 24.56 10.37

5 21.43 16.89 22.51 14.43 23.56 11.90

10 20.83 17.62 22.11 15.12 22.84 13.33

20 19.60 19.73 21.03 17.08 21.06 17.03

σε=0.1

1 20.41 18.86 21.40 16.52 23.36 12.15

5 20.00 19.32 21.07 17.19 22.71 13.29

10 19.55 20.06 20.71 17.98 21.92 14.95

20 18.66 22.22 19.89 19.86 20.43 18.35

σε=0.25

1 18.12 23.54 18.98 22.03 20.04 17.02

5 17.96 23.95 18.85 22.40 19.65 18.06

10 17.61 25.20 18.44 23.50 19.15 19.57

20 16.74 27.69 17.79 25.48 18.30 21.92

3x3 VMRH
3x3 Cas. MM

(Andrew)
3x3 Cas. WM

(Andrew)

PSNR MAE PSNR MAE PSNR MAE

σε=0.05

1 23.90 12.21 24.39 10.91 24.52 10.87

5 23.45 12.84 23.92 11.53 23.96 11.49

10 23.12 13.22 23.60 11.89 23.67 11.86

20 21.89 15.24 22.50 13.33 22.55 13.32

σε=0.1

1 21.47 16.23 22.49 13.66 22.55 13.60

5 21.16 16.77 22.23 14.05 22.25 14.05

10 20.78 17.63 21.95 14.55 21.99 14.54

20 19.83 19.50 21.10 16.13 21.12 16.11

σε=0.25

1 18.19 23.60 19.85 17.66 19.88 18.58

5 18.09 24.09 19.78 17.80 19.78 18.81

10 17.57 25.73 19.38 19.13 19.37 20.11

20 16.75 28.26 18.70 20.66 18.71 21.64

The results of such a filtering are presented in Figure 7.2 for «Pentagon» image. As
seen from the analysis of the zoom part of the filtering images, speckle noise can be
efficiently suppressed, while the sharpness and fine feature are preserved well using the
proposed Cascade RM-filters.
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7.6. Model of Multichannel (Color) Image

7.6.1. RGB Model. In the case of multichannel images, in particular, color images,
each pixel can be represented as a vector in 3D color space as shown in Fig. 7.3.
For example, in RGB, the color image pixels are considered as vectors in the color cube,
where the points marked with a cross «X» are in the intersection with the Maxwell

triangle (the triangle drawn between the three primaries R, G, B) as is seen in Fig. 7.3.
Angle θ represents the angles between two vectors U and V.

Fig. 7.3. Maxwell triangle.

Color images can be also modeled in other color spaces YIQ, HIS, HSV or L*a*b*
[21, 35].

7.6.2. YIQ Model. This model is used in TV applications and is the linear
transformation of the RGB model:

[
Y
I
Q

]
=

[
0.299 0.587 0.114
0.596 − 0.275 − 0.321
0.212 − 0.523 0.311

][
R
G
B

]
. (7.60)

Usually, representation of the component (luminance) Y takes more bits than that of
the components I and Q.

7.6.3. HSI (hue, saturation, intensity) Model. The component I presents inten-
sity and the other two components: tone and saturation are based on human perception
of color properties:

r =
R

(R+G+B)
, g =

G

(R+G+B)
, b =

B

(R+G+B)
,

r + g + b = 1.
(7.61)
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It is easy to find the intensity as I =
1

3
(R + G + B), and the equations for the other

two components are

H = cos−1





1/2[(R−G) + (R−B)]
[
(R−G)2 + (R−B)(G−B)

]1/2



 ,

S = 1− 3

(R+G+B)
[min(R,G,B)] .

(7.62)

The conversion can be written as follows:
for 0◦ < H < 120◦ we have:

b =
1

3
(1− S), r =

1

3

[
1 +

S cosH

cos(60◦ −H)

]
, g = 1− (r + b); (7.62a)

for GB(120◦ < H 6 240◦):

H = H − 120◦,

r =
1

3
(1− S), g =

1

3

[
1 +

S cosH

cos(60◦ −H)

]
, b = 1− (r + g);

(7.62b)

for BR(240◦ < H 6 360◦):

H = H − 240◦,

g =
1

3
(1− S), b =

1

3

[
1 +

S cosH

cos(60◦ −H)

]
, r = 1− (g + b).

(7.62c)

The tone is the color attribute of pure, and saturation gives the estimates of the
grade of dilution of pure color with white light. It is possible to separate the intensity
component I from the color information of an image. This can be done in a similar
manner as by the human eye. The model uses cylindrical coordinates.

The saturation is proportional to the radial distance, the tone (H) (Fig. 7.4) is the
function of angle of coordinate, and intensity is the distance on the axis perpendicular
to the polar coordinates [21].

7.6.4. HSV (hue, saturation, value) Model. This model is similar to the HSI one
and it states that intensity is changed from black to white in one prism (Fig.7.5).

7.6.5. Models: L*u*v*and L*a*b*. The first model is represented using RGB
space and reference point is white. This is equivalent to [1, 1, 1]. Lightness L* is
defined as a cubic raise of luminance (Y):

The definition of L* is applied for one segment near black for (Y/Ynis) 6 0.008856
and is changed in the interval [0, 100].

L∗ =

{
116(Y/Yn)1/3 − 16 if Y/Yn > 0.008856,

903.3(Y/Yn)1/3 otherwise.
(7.63)

To calculate u∗ and v∗, the following equations for intermediate parameters
u′, v′,u′n

,v′n is commonly used:

u′ =
4X

X + 15Y + 3Z
, v′ =

9Y

X + 15Y + 3Z
,

u′n =
4Xn

Xn + 15Yn + 3Zn
, v′n =

9Yn

Xn + 15Yn + 3Zn
.

(7.64)
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Fig. 7.4. HSI model.

Fig. 7.5. HSV Model.
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Finally, for u∗ ad v∗, we can write
{
u∗ = 13L ∗ (u′ − u′n),

v∗ = 13L ∗ (v′ − v′n).
(7.65)

For L*a*b*model, the equations are written as




L∗ = 116(Y/Yn)1/3 − 16,

a∗ = 500[(x/xn)
1/3 − (y/yn)

1/3],

b∗ = 200[(y/yn)1/3 − (z/zn)
1/3]

(7.66)

under the conditions x/xn, y/yn, z/zn > 0.01.

7.6.6. False Color Model. The change of monochromatic images into color ones
can be done according to gray levels, for example, as presented in Fig. 7.7, where the
image is interpreted as a 2D function. Different colors are assigned there to different
parallel planes. So, each pixel of a plane is represented by the same color.

Fig. 7.6. Color codification.

7.7. Wavelet Functions in Multidimensional Signal Processing

7.7.1. Wavelet Analysis. The mathematical theory of the wavelet systems is
discussed in Chapter 4 of this book. Here, before introducing the wavelet transform,
we will review some of the concepts concerning such transforms. A transform can be
thought of as a remapping of a signal that provides more information than the original.
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The Fourier transform fits this definition quite well because the frequency information
that it provides often leads to new insights in the original signal. However, the inability
of the Fourier transform to describe both time and frequency characteristics of the
waveform led to a number of different approaches. None of these approaches was able
to solve completely the time–frequency problem. The wavelet transform can be used
as another way to describe the properties of a waveform changing in time, but, in this
case, the waveform is divided not into sections of time but segments of scale.

In the Fourier transform, the waveform is compared to the sine function, more
precisely, a whole family of sine functions at harmonically related frequencies. This
comparison is carried out by multiplying the waveform by the sinusoidal functions and
averaging the product (using either integration in the continuous domain or summation

in the discrete domain), i.e., X(ωm) =
+∞∫
−∞

x(t)e−jωmtdt, which represents the continuous

Fourier transform.
Almost any family of functions could be used to probe the characteristics of

a waveform, but sinusoidal functions are particularly popular because of their unique
frequency characteristics: they contain energy at only one specific frequency. Naturally,
this feature makes them ideal for probing the frequency makeup of a waveform, for
example, its frequency spectrum.

Other probing functions can be used, functions chosen to evaluate some particular
behavior or characteristic of the waveform. If the probing function is of finite duration,
it would be appropriate to translate, or slide, the function over the waveform, x(t),
as is done in convolution and the short-term Fourier transform (STFT), given by the
following equation:

STFT (t, f) =

+∞∫
−∞

x (τ )
(
w (t− τ ) e−2jπfτ

)
dτ. (7.67)

Here, f is the frequency and also serves as an indication of family member, and w(t-τ )
is some sliding window function, where t acts to translate the window over x. More
generally, a translated probing function can be written as

X(t,m) =

+∞∫
−∞

x (τ ) fm (t− τ ) dτ. (7.68)

Here, fm(t) is some family of functions and m specifies the family number.
If the family of functions fm(t) is sufficiently large, then it should be able to represent

all aspects of the waveform x(t). This would then allow x(t) to be reconstructed from
X(t,m) making this transform bilateral.

Often the family of basis functions is so large that X(t, m) forms a redundant set
of descriptions, more than sufficient to recover x(t). This redundancy can sometimes be
useful, serving to reduce noise or acting as a control, but may be simply unnecessary.
Note that while the Fourier transform is not redundant, most transforms represented by
(7.68) (including the STFT and all the distributions) would be, since they map a variable
of one dimension (t) into a variable of two dimensions (t, m).

7.7.2. Wavelet Transform. The Wavelet transform introduces an intriguing twist
to the basic concept defined by equation (7.68). In wavelet analysis, a variety of different
probing functions may be used, but the family always consists of enlarged or compressed
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versions of the basic function, as well as translations. This concept leads to the defining
equation for continuous wavelet transform (CWT) [35, 36]:

W (a, b) =

+∞∫
−∞

x(t)
1√
|a|
ψ ∗

(
t− b

a

)
dt, (7.69)

where b acts to translate the function across x(t) just as t does in the equations above,
and the variable a acts to vary the time scale of the probing function ψ. If value a is
greater than one, the wavelet function ψ is stretched along the time axis, and if it is
less than one (but still positive) it contacts the function. Negative values of a simply
flip the probing function on the time axis. While the probing function ψ could be any of
a number of different functions, it always takes on an oscillatory form, hence the term
«wavelet». If b=0 and a=1, then the wavelet is in its natural form, which is termed the
mother wavelet; that is, ψ1,0(t)≡ ψ(t). A mother wavelet is shown in Fig.7.7 along with
some of its family members produced by dilation and contraction. The wavelet shown is
the popular Morlet wavelet, named after a pioneer of wavelet analysis, and is defined by
the equation:

ψ(t) = e−t
2

cos

(
π

√
2

ln 2
t

)
. (7.70)

Fig. 7.7. A mother wavelet (a = 1) with two dilations (a = 2, 4) and one contraction (a = 0.5).
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The wavelet coefficients W (a, b) describe the correlation between the waveform and
the wavelet at various translations and scales: the similarity between the waveform and
the wavelet at a given combination of scale and position, a and b. Stated another way,
the coefficients provide the amplitudes of a series of wavelets over a range of scales and
translations, that would need to be added together to reconstruct the original signal.
From this perspective, wavelet analysis can be thought of as a search over the waveform
of interest for activity that most clearly approximates the shape of the wavelet.

This search is carried out over a range of wavelet sizes: the time span of the wavelet
varies although its shape remains the same. Since the net area of a wavelet is always
zero by design, a waveform that is constant over the length of the wavelet would give
rise to zero coefficients. Wavelet coefficients respond to changes in the waveform, more
strongly to changes on the same scale as the wavelet, and most strongly, to changes
that resemble the wavelet. Although a redundant transformation, it is often easier to
analyze or recognize patterns using the CWT.

If the wavelet function ψ(t) is appropriately chosen, then it is possible to reconstruct
the original waveform from the wavelet coefficients just as in the Fourier transform.
Since the CWT decomposes the waveform into coefficients of two variables, a and b,
a double summation in discrete case (or integration in continuous case) is required to
recover the original signal from the coefficients [37, 38]:

x(t) =
1

C

+∞∫
a=−∞

+∞∫

b=−∞

W (a, b)ψa,b(t)da db, (7.71)

where C =
+∞∫
−∞

|Ψ(ω)|2
|ω| dω and 0 < C < −∞ (so called admissibility condition).

In fact, reconstruction of the original waveform is rarely performed using the CWT
coefficients because of its redundancy. When recovery of the original waveform is
desired, the more parsimonious discrete wavelet transform is used

Wavelet Time-Frequency Characteristics.
Wavelets, such as that shown in Fig. 7.7 do not exist at a specific time or a

specific frequency. In fact, wavelets provide a compromise in the battle between time
and frequency localization: they are well localized in both time and frequency but not
precisely localized in either. A measure of the time range of a specific wavelet, ∆tψ,
can be specified by the square root of the second moment of a given wavelet about its
time center:

∆tψ =

√√√√√
+∞∫
−∞

(t− t0)2|ψ(t/a)|2 dt/
+∞∫
−∞

|ψ(t/a)|2 dt ,

where t0 is the center time, or the first moment of the wavelet, and is given by

t0 =

+∞∫
−∞

t |ψ(t/a)|2 dt/
+∞∫
−∞

|ψ(t/a)|2 dt.
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Similarly the frequency range, ∆ωψ is given by

∆ωψ =

√√√√√√√√√√√

+∞∫

−∞

(ω − ω0)
2|Ψ(ω)|2 dω

+∞∫

−∞

|Ψ(ω)|2 dω

,

where Ψ(ω) is the frequency domain representation of ψ(t/a), and ω0 is the center
frequency of Ψ(ω). The center frequency is given by the equation

ω0 =

+∞∫

−∞

ω |Ψ(ω)|2 dω

+∞∫

−∞

|Ψ(ω)|2 dω

.

The time and frequency ranges of a given family can be obtained from the mother

wavelet. Dilation by the variable a changes the time range simply by multiplying ∆tψ,
by a. Accordingly, the time range of ψa,0 is defined as ∆tψ(a) = |a|∆tψ. The inverse
relationship between time and frequency is shown in Fig.7.8, which was obtained for the
Mexican hat wavelet. This wavelet is given by equation:

ψ(t) = (1− 2t2)e−t
2

. (7.72)

The frequency range, or bandwidth, would be the range of the mother Wavelet divided
by a: ∆ωψ(a) = ∆ωψ/|a|. If we multiply the frequency range by the time range, the a’s
cancel and we are left with a constant that is the product of the constants produced by
∆tψ and ∆ωψ, given by the following equation:

∆ωψ(a) · ∆tψ(a) = ∆ωψ∆tψ = constantψ. (7.73)

Fig. 7.8. Time-frequency boundaries of the Mexican hat wavelet for various values of a. The area
of each of these boxes is constant.
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Equation (7.73) shows that the product of the ranges is invariant to dilation (changes
in the variable b do alter either the time or frequency resolution; hence, both time and
frequency resolution, as well as their product, are independent of the value of b) and
that the ranges are inversely related; increasing the frequency range, ∆ωψ(a) decreases
the time range, ∆tψ(a). These ranges correlate to the time and frequency resolution of
CWT. Decreasing the wavelet time range (by decreasing a) provides a more accurate
assessment of time characteristics (the ability to separate the close events in time) at
the expense of frequency resolution, and vice versa.

Since the time and frequency resolutions are inversely related, the CWT can provide
better frequency resolution when a is large and the length of the wavelet (and its
effective time window) is long. Conversely, when a is small, the wavelet is short
and the time resolution is maximum, but the wavelet only responds to high frequency
components. Since a is variable, there is a built-in trade-off between time and frequency
resolution, which is the key to the CWT and makes it well suited in signal analysis
with rapidly varying high frequency components superimposed on slowly varying low
frequency components.

The CWT has one serious problem: it is highly redundant. The CWT provides an
oversampling of the original waveform: many more coefficients are generated than are
actually needed to uniquely specify the signal. This redundancy is usually not a problem
in analysis applications, such as described above, but will be costly if the application calls
for recovery of the original signal. For recovery, all of the coefficients will be required
and the computational effort could be excessive. In applications that require bilateral
transformations, we would prefer a transform that produces the minimum number of
coefficients required to recover accurately the original signal. The discrete wavelet

transform (DWT) achieves this parsimony by restricting the variation in translation and
scale, usually to powers of 2. When the scale is changed in powers of 2, the discrete
wavelet transform is sometimes termed the dyadic wavelet transform. The DWT may
still require redundancy to produce a bilateral transform unless the wavelet is carefully
chosen such that it leads to an orthogonal family. In this case, the DWT will produce
a non-redundant, bilateral transform.

The basic analytical expressions for the DWT will be presented here; however, the
transform is easier to understand and easier to implement using filter banks [38–41].
The DWT is often introduced in terms of its recovery transform

x(t) =
∞∑

k=−∞

∞∑

ℓ=−∞

d(k, ℓ)2−k/2ψ(2−kt− ℓ). (7.74)

Here, k is related to a as a = 2k ; b is related to ℓ as b = 2kℓ; and d(k, ℓ) is a sampling
of W (a, b) at discrete points k and ℓ.

In the DWT, the scaling function is introduced, i.e., a function that facilitates
computation of the DWT. To implement the DWT efficiently, the finest resolution is
computed first. The computation then proceeds to coarser resolutions, but rather than
start over on the original waveform, the computation uses a smoothed version of the
fine resolution waveform. This smoothed version is obtained with the help of the
scaling function. In fact, the scaling function is sometimes referred to as the smoothing

function. The definition of the scaling function uses a dilation or a two-scale difference

equation:

ϕ(t) =
∞∑

n=−∞

√
2 c(n)ϕ(2t− n). (7.75)
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Fig. 7.9. Structure of the analysis filter bank for 2-D image with two levels of decomposition.
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Where c(n) are the series of scalars that define the specific scaling function. This
equation involves two time scales (t and 2t) and can be quite difficult to solve.

In the DWT, the wavelet itself can be defined from the scaling function [40]:

ψ(t) =
∞∑

n=−∞

√
2 d(n)ϕ(2t− n). (7.76)

where d(n) are the series of scalars that are related to the waveform x(t) (7.74) and
that define the discrete wavelet in terms of the scaling function. While the DWT can
be implemented using the above equations, it is usually implemented using filter bank
techniques.

For most signal and image processing applications, DWT-based analysis is best
described in terms of filter banks. The use of a group of filters to divide up a signal into
various spectral components is termed subband coding. The most used implementation
of the DWT for 2-D signal applies only two filters for rows and columns, as in the filter
bank, which is shown in Fig. 7.9.

The DWT can also be applied to construct useful descriptors of a waveform. Since
the DWT is a bilateral transform, all of the information in the original waveform must
be contained in the subband signals. These subband signals, or some aspect of the
subband signals, such as their energy over a given time period, could provide a succinct
description of some important aspect of the original signal.

In the decompositions described above, only the low-pass filter subband signals were
sent on for further decomposition. This decomposition structure is also known as a
logarithmic tree.

However, other decomposition structures are valid, including the complete or bal-
anced tree structure shown in Fig. 7.10. In this decomposition scheme, both high-pass
and low-pass subbands are further decomposed into high-pass and low-pass subbands
up till the terminal signals. Other, more general, tree structures are possible, where a
decision on further decomposition (whether or not to split a subband signal) depends on
the activity of a given subband. The scaling functions and wavelets associated with such
general tree structures are known as wavelet packets.
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Chapter 8

VECTOR ORDER STATISTICS IN MULTICHANNEL

AND VIDEO PROCESSING

8.1. Vector Order Statistics

Different applications of multichannel image processing, such as multisensor remote
sensing, color imaging, robot control, etc. can be sufficiently realized using concepts of
robust vector order statistics. The final outputs of such rank procedures usually depend
on the type of data that can be, for example, multichannel satellite sensor’s images, or
color channels ones. So, a special function ∆ should be selected to evaluate the norm or
distance between two vectors yi and yj that represent two images. Different techniques
can be used, operated on the magnitude space, angular domain, and, finally, combined
in usual representation or more complex fuzzy language ones.

The vector ordering of each multichannel sample or vector y, i = 1, 2, . . . ,N , should
be reduced to a scalar representative that is obtained using the aggregated distances or
similarities as follows [1–3]:

∆(yi) =
N∑

j=1

d(yi, yj), (8.1)

where d(.) denotes the norm applied or dissimilarity measure. Usually, the Minkowski
metrics (Lq) for p-channel signal y is used:

dM (yi, yj) =

(
p∑

k=1

| (yki − ykj ) |q
)1/q

.

Special cases of such a norm are: City-Block (norm L1)

d
(
L1
yi, yj) =

p∑

k=1

∣∣(yki − ykj
∣∣

and Euclidean (norm L2)

dL2
(yi, yj) =

(
p∑

k=1

| (yki − ykj ) |2
)1/2

.

If it is necessary to realize order operation for vectors yi located inside the supporting
window, cube, or more general sample group. The scalar measures ∆(yi) should be
ranked in the order of its values and thus burn a novel ordered sample of ∆(yi) and
initial vectors yi [2, 3]:

∆(1) 6 ∆(2) 6 . . . 6 ∆(N), (8.2)

y(1)(∆(1)) 6 y(2)(∆
)
(2) 6 . . . 6 y(N)(∆(N)). (8.3)
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Finally, the ordered vectors represent a one-dimensional sample and have a one-to-one
correspondence with the original vector sample in the selected window, cube or more
general sample group.

The output of ranking is determined by the type of the initial sample and the function
∆(yi), which can be based on magnitude, directional, or fuzzy membership or maybe
more general ones. Figure 8.1 illustrates the ordered vectors in the population of five
vectors.

Fig. 8.1. Extreme vector order statistics expressed in the population of five vectors. (a) Lowest
vector order statistic x(1). (b) Uppermost vector order statistic x(N).

8.1.1. Vector Median Ordering and Filtering. In this case, multichannel sample
yi is associated with the norm

∆Li =
N∑

j=1

‖yi − yj‖q =
N∑

j=1

(
K∑

m=1

|yik − yjk|q
) 1

q

, (8.4)

where ‖yi − yj‖q is the distance between two K−channel samples in the Minkowski
norm in the particular cases: the city-block norm (q = 1), the Euclidean norm (q = 2),
and the chess-board one (q = ∞). The sample associated with the minimum vector
norm ∆L1 defines the output of the Vector Median Filter, which minimizes the distance
to all other vectors inside the sliding window, cube, or another group of samples, i.e.,
∆L1 6 ∆L2 6, . . . ,6 ∆LN .

The weighted VMF (WVMF) is the vector YWVM with the components {y1, y2, . . .
. . . , yN} satisfying the equation [1, 2, 4]

N∑

i=1

wi ‖ai ⊗ (yWVM − yi‖Q 6

N∑

i=1

wi ‖ai ⊗ (yi − yi‖Q, j = 1, 2, . . . ,N. (8.5)

The point-wise multiplication is denoted by ⊗.

8.1.2. Basic Directional Ordering and Filtering. These terms mean the standard
directional processing applied in color imaging to each input vector y, i = 1, 2, . . . ,N
and associated with the angular norm, for example, as follows [1, 2, 5, 6]:

α(yi) =
N∑

j=1

A(yi, yj), (8.6)

where A(yi, yj) is the angle between two K dimensional vectors yi and yj .The
final ordered sample α(1), which minimizes the angle with all other vectors, forms
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the associated output vector called Basic Vector Directional Filter output, where
α(1) 6 α(2) 6, . . . ,6 α(N). The principal drawback of this filter is its computational
complexity due to the calculation of all the angles.

Figure 8.2 expresses the quantification of differences between the 2D vectors.

Fig. 8.2. Quantification of differences between the 2D vectors x(p,q) = [x(p,q)1, x(p,q)2] and
x(i,j) = [x(i,j)1, x(i,j)2] expressed in red-green (RG) color space. (a) Expressed through the
Euclidean metrics ‖x(p,q) − x(i,j)‖2 in the magnitude domain. (b) Expressed through the angle

A(x(p,q),x(i,j)) in the directional domain.

8.1.3. Directional Distance Filter. This filter is formed as a combination of the
vector median filter and vector directional one and is expressed as a hybrid ordering
criterion [6–8]:

Ω =

(
N∑

j=1

‖yi − yj‖Q

)P ( N∑

j=1

A(xi,xj)

)1−P

, for i = 1, 2, . . .,N. (8.7)

DDF output is the sample y(1) that minimizes the above criterion and is associated
with Ω(1) that satisfied the condition Ω(1) 6 Ω(2) 6 . . . 6 Ω(N). If P = 1, then DDF is
equivalent to the VMF; if P = 0, then the DDF is exactly the BVDF.

The filters presented above are operating using fixed support window and can
introduce excessive smoothing and blur image details or illuminate fine image details.
There are several possibilities to improve the quality of filtering, but the principal idea is
that, if the sample is free of noise, it should be leaved unchanged. One of the promising
approaches is the switching scheme, when the filter is to decide whether it will use
nonlinear robust procedure or switch to the identity operator.

8.2. Kernel Density Estimation Method

8.2.1. Adaptive Kernel Multichannel Filter. This approach uses smooth nonpara-
metric estimate of distribution density. So, the similarity measure of two estimates of
color distribution is the distance between two surfaces of 2D kernel density estimations
in the normalized RGB color space. The data are represented by a set of sample values
from an unknown density distribution to be estimated.
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The multichannel kernel density estimate in the q-dimensional case is defied as [1, 2]

f(
−→
Y ) =

1

nhq

N∑

i=1

K
(‖Y − Yi‖

h

)
. (8.8)

The shape of approximated density depends heavily on chosen parameter h :small values
of h lead to spiked density estimates; on other hand, big values can produce over-
smoothed estimates and hide fine image details.

It is common to choose the Gaussian or exponential kernels, i.e., K(z) =
= exp (−0.5 zτz) or K(z) = exp (− |z|) [1, 2], respectively.

This approach gives the following solution:

Ŷ (y)np =
n∑

l=1

xl




h−M
l K

(
y − yl

hl

)

n∑

l=1

h−M
l K

(
y − yl

hl

)


 =

n∑

l=1

Ylωl(y), (8.9)

where yl ∈W and ωl(y) is a weight function in the interval [0,1].
The choice of the Gaussian kernel function makes it possible to find the optimal

value of hopt = [4/(q + 2)]
1

q+4 σ̂n
−

1
q+4 , where σ̂ is the standard deviation. In the case of

the 2D model, q = 2.
Figure 8.3 presents a block diagram of the nonparametric algorithm [9, 10].

8.2.2. Adaptive Multichannel Nonparametric Filtering (AMNFs). In real ap-
plications of image processing, the vectors of the actual image are not available for
observation, so it usually provides a suboptimal solution. One of such approaches is the
adaptive multichannel nonparametric filtering (AMNF), which uses contaminated pixels
to estimate the kernel:

Ŷ (y)AMNF =
n∑

l=1

yl




h−M
l K

(
y − yl

hl

)

n∑

l=1

h−M
l K

(
y − yl

hl

)


. (8.10)

The block diagram is the same as presented in Fig.8.3 but with one difference:
the reference vectors are contaminated ones. The expression (xl → yl) signifies that
it is not necessary to use any reference filter output. Another possibility is to use
the previously formed vector as the reference one, for example, the VMF output
vectors [1, 2] are defined as

x̂(y)AMNF _VM =
n∑

l=1

xVMl




h−M
l K

(
y − yl

hl

)

n∑

l=1

h−M
l K

(
y − yl

hl

)


. (8.11)

So, the block diagram presented above is changed at the stage of forming the reference
vector.
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Fig. 8.3. Block diagram of nonparametric algorithm.

Other possibilities are also presented in this work. Besides VMF, other filter outputs
are used, for example, the MM-KNN filter vectors [9–11] are defined as

x̂(y)AMN_MMKNN =
n∑

l=1

xMMKNN
l




h−M
l K

(
y − yl

hl

)

n∑

l=1

h−M
l K

(
y − yl

hl

)


. (8.12)

The quality of filtering depends on the window size, chosen values hl, type of the kernel
approximating the real one, and the reference vector, which usually should be obtained
using another filtering scheme.

8.2.3. Generalizad Vector Directional Filter with Double Window
(GVDF_DW). This filter employs two operations used in the different windows. The
small window is used to preserve the details of the image, and larger one is used

6 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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in order to have more vector values and better approximation of the output vector.
For example, when the VDF processing is applied, the directional operation and the
magnitude one can be realized in two windows [1, 10].

Assume that W1 and W2 are two windows such that W1 ⊂ W2. Consider y1i
, i =

= 1, 2, . . . ,n, as the vectors of an image in W1, y1i
∈ W1 and f2j

, j = 1, 2, . . . , l are the
vectors in W2 window image outside W1, i.e., f2j

∈ W2 −W1. The GVDF applied to

y1i, i = 1, 2, . . . ,n, produces an output set
{
y
(1)
1 , y

(2)
1 , . . . , y

(k)
1

}
according to the order

of α′
i
s : α

(1)
1 6 α

(2)
1 6 · · · 6 α

(k)
1 6 · · · 6 α

(n)
1 . The set

{
y
(1)
1 , y

(2)
1 , . . . , y

(k)
1

}
should be

complemented by vectors of the sub-window W2 −W1, and these vectors are used to
calculate the final output Ŷ as

Ŷ = ℑ
{
y(1), y(2), . . . , y(k)

}
= ℑ{GVDF [y1, y2, . . . , yn]} . (8.13)

For the vectors Y2j
∈ W2 −W1, one should obtain α′

2j
that relates to Y2j

defined

according to angles as

α′
2j

=
n∑

i=1

A(Y2j
,Y1i

). (8.14)

The application of Y2j
changes the set

{
y
(1)
1 , y

(2)
1 , . . . , y

(k)
1

}
according to the following

condition: α′
2j

6 α
(k)
1 .

This definition uses the internal window (W1) to realize the directional ordering, and
the vectors of external sub window (W2 −W1) are used in the magnitude processing
if its vectors are close to the vector median of the sample. Figure 8.4 exposes the
GVDF_DW algorithm with a double window: the first window is of 3× 3 and the second
one is of 5× 5.

8.3. Fuzzy Logic Definitions and Properties

Fuzzy transformation (FZT) theory is briefly introduced in this section and the
definitions of the fuzzy ranks are given. We explain two fundamental properties of the
fuzzy ranks, i.e., the order invariant and spread sensitive properties. These properties
show how fuzzy ranks jointly represent the rank order and spread information [12–15].

8.3.1. Fuzzy Logics Definitions. FZT theory addresses the relationship be-
tween an observation crisp sample vector xl = [x1,x2, . . . ,xN ], within which the sam-
ples are indexed according to their spatial locations, and the order statistic vector
xL = [x(1),x(2), . . . ,x(N)], which is generated by crisp rank ordering of the observed
samples, so that x(1) 6 x(2) 6 . . . 6 x(N). The crisp relationship between a spatial
sample xi and an order statistic x(j) can be represented by a binary spatial-ranking (SR)
relation [15]

R = {(xi,x(j),µ(xi,x(j))/xi, x(j) ∈ X},

µ(xi,x(j)) =

{
1, for xi ↔ x(j)

0, otherwise
,

(8.15)
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Fig. 8.4. Block diagram for VDF with double window.

where xi ↔ x(j) indicates thatxi has rank x(j). Thus, the full set of crisp SR relations
can be represented by the crisp SR matrix as [15]:

R =




R1,(1) . . . R1,(N)

. . . . . . . . .

. . . . . . . . .
RN ,(1) . . . RN ,(N)


 . (8.16)

6*
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The crisp SR matrix defines the linear transformation between xl and xL, i.e., xl = xLRT

and xL = xlR, where R
T is the transposition of R.

The spatial index vector, s = [s1, s2, . . . , sN ], where si is the spatial index of x(j),
and the rank index vector r = [r1, r2, . . . , rN ], where ri is the rank of xi, are also
given by linear transformations defined by the crisp R matrix, i.e., s = [1 : N ]R, and
r = [1 : N ]RT .

The crisp R matrix contains only the spatial and rank order information of the
samples. In order to incorporate the spread information into the R relations, a real-valued
membership function µF (∗, ∗) is used to describe the fuzzy relationship between two
arbitrary samples. The following intuitive constrains are imposed on the real-valued
membership function [14, 15]:

(1) lim
|a−b|→0

µ(a, b) = 1

(2) lim
|a−b|→∞

µ(a, b) = 0

(3) |a1 − b1| 6 |a2 − b2| ⇒ µF (a1, b1) > µF (a2, b2). (8.17)

These constrains imply that two identical samples have relation 1, while two infinitely
distant samples have relation 0. Also, the relation between samples should increase as
the distance between them decreases.

In the case of color or multichannel imaging, the given two color pixels x and
y resemble their physical similarity and meet the constraints of a fuzzy membership
function as follows:

(1) µ(x, y) → 1, if ‖x− y‖ → 0;

(2) µ(x, y) → 0, if ‖x− y‖ → ∞;

(3) µ(x1, y1) > µ(x2, y2), ∀ ‖x1 − y1‖ 6 ‖x2 − y2‖ , (8.17a)

where ‖ ‖ defines the norm used in the multichannel imaging.
Widely used membership functions that satisfy the constraints presented in (8.17)

include [13, 15]:
the Gaussian membership function

µG(a, b) = exp[−(a− b)2/2σ2],

uniform membership function

µU (a, b) =

{
1, |a− b 6 α| ,
0, otherwise,

and triangular membership function

µU (a, b) =

{
1− |a− b| /α, |a− b 6 α| ,
0, otherwise,

where σ and α are free parameters used to control the function spread. It is important
to mark that all three membership functions are symmetric, i.e., µF (a, b) = µF (b, a).

Nevertheless, the Gaussian model usually is chosen to describe the similarity
between two color pixels, mainly due to its success in the prior-art fuzzy ranked filters
[16–18], and the exponential characteristics of the perceptual distance measures.
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Two types the Gaussian functions are taken into account. The first is the Gaussian
function based on the vector magnitude, that is,

µ(x, y) = exp

(
−‖x− y‖2

2σ2

)
. (8.18)

The second is a vector extension of the Gaussian membership in the RGB or YCbCr

color space, i.e., µ2(x, y) = [µ
[1]
2 (x, y)µ

[2]
2 (x, y)µ

[3]
2 (x, y)]T , where

µ
[i]
2 (x, y) = exp


−

∣∣∣x[i] − y[i]
∣∣∣
2

2σ2
i


 (8.19)

denotes the membership function for the i-th color component and [i] is the sample
spread of the image data in that color component.

The full set of fuzzy SR relations among samples is, thus, represented by the fuzzy
SR matrix

R̃ =




R̃1,(1) . . . R̃1,(N)

. . . . . . . . .

. . . . . . . . .

R̃N ,(1) . . . R̃N ,(N)


 , (8.20)

where R̃i,(j) = µ(xi,x(j)) ∈ [0, 1] and µ(xi,x(j))is the utilized membership function.
The fuzzy spatial sample vector and fuzzy order statistic vector are defined as

functions of the fuzzy SR matrix in a fashion analogous to the linear transformations
between their crisp counterparts. In order to restrict the resulting values to the same
ranges as the crisp counterparts, the fuzzy SR matrix is row normalized (denoted by R̃l)
or column normalized (denoted by R̃L). Then the fuzzy spatial sample and fuzzy order
statistic vectors are defined as

x̃l = xL(R̃l)T and x̃L = xlR̃
L.

Similarly, the fuzzy spatial index vector and fuzzy rank vector are given by

s̃ = [1 : N ]R̃L and r̃ = [1 : N ](R̃l)T .

Carrying out the matrix expression for a single term in the above definitions yields
the following expressions for the fuzzy sample x̃i, order statistic x̃(j), spatial index s̃j ,
and rank r̃i [14, 15]:

x̃i =

∑N

k=1
xkR̃i,(k)

∑N

k=1
R̃i,(k)

, x̃(j) =

∑N

k=1
xkR̃k,(j)

∑N

k=1
R̃k,(j)

, (8.21)

and

s̃i =

∑N

k=1
kR̃k,(j)

∑N

k=1
R̃k,(j)

, r̃i =

∑N

k=1
kR̃i,(k)

∑N

k=1
R̃i,(k)

. (8.22)

Thus, x̃iand x̃(j) are weighted averages of the crisp order statistics and samples, and s̃j
and s̃j are weighted averages of the indices 1, 2, . . ..,N . The weights in each case are
given by the fuzzy SR relations between the samples. The FZT refers to the mapping
from the quadruple {xl,xL, s, r} to its fuzzy counterpart {x̃l, x̃L, s̃, r̃}. A special class
of FZT, the consistent FZT, utilizes membership functions satisfying the order invariant
condition and is of great importance. Under consistent FZT, an order invariant property
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is retained in the fuzzy order statistics and fuzzy ranks. In the following, we focus on
investigating the order invariant and spread sensitive properties of the fuzzy ranks to
see how they jointly represent the rank order and spread information.

8.3.2. Fuzzy Logics Properties.
8.3.2.1. Order Invariant Property.
The order invariant property is stated in the following theorem.
Theorem 1. The FZT preserves the sample rank order, i.e., in a set of observation

samples, {x1,x2, . . .,xN}, if xi 6 xj or equivalently, ri<rj , where ri and rj are the

crisp ranks of xi and xj , respectively, then r̃i 6 r̃j , where r̃i and r̃j are the fuzzy ranks

of xi and xj , respectively, obtained through a consistent FZT.
The proof of the above theorem is given in [15]. This theorem indicates that, under

the consistent FZT, higher valued samples have higher fuzzy ranks. Thus, the fuzzy
ranks represent the rank-order information of the samples in a fashion consistent with
the crisp ranks. This implies that the fuzzy ranks can replace the crisp ranks in rank-
order-based algorithms without distorting the rank-order information. The advantages
of the replacement can be explained through the following spread sensitive property.

Theorem 2. The FZT preserves the sample rank order, i.e., x̃(1) 6 x̃(2) 6 . . .

. . . 6 x̃(N), if and only if the membership function µ(∗, ∗) is such that C(x, t,∆t) =
= µ(x, t + ∆t)/µ(x, t) is a monotonically nondecreasing function of x ∈ (−∞, t) ∪
∪ [t+ ∆t,+∞) ,∀t,∆t ∈ R, and ∆t > 0.

Membership functions that satisfy this condition are referred as order invariant

membership functions. The functions presented before: the Gaussian, uniform, and
triangular are order invariant membership functions. This theorem implies the following
property: ri < rj ⇒ r̃i < r̃j [15].

8.3.2.2. Distribution of the Fuzzy Samples.

Theorem 3. For independent and identically distributed (i.i.d.) samples

{x1,x2, . . . ,xN}, the corresponding fuzzy samples {x̃1, x̃2, . . . , x̃N} obtained by the

aforementioned procedure based on a uniform membership function are identically

distributed with the probability density function (pdf) approximately

f
(
x̃i
x) = (1− px)

N−1fX(x) + px

N−1∑

u=1

(u+ 1)fSu+1Ix((u+ 1)x)Pu(x). (8.23)

This approximation is correct if fX(x) is approximately constant in the interval
[x− 2α,x+ 2α] and u ≫ 1. The px is the probability of a crisp sample within the
neighborhood [x− 2α,x+ 2α]. The fSuIt

(∗) is the conditional pdf of the local sum of
u(crisp) samples in the interval [x− α,x+ α], and

Pu(t) =

(
N − 1
u

)
put (1− pt)

N−1−u

is the probability that there are u active neighboring samples around t.
The analysis of this equation shows that when px is small, the first term dominates

and the fuzzy samples have similar distribution as the crisp samples. In the opposite
case, the fuzzy samples behave like the local mean of crisp samples in a neighborhood
of size 2α. We can conclude that the crisp samples having similar values are further
clustered around their local mean. While the samples having disparate values tend to
remain unchanged. So, fuzzy samples reflect the spread information embedded in crisp
samples, and this usually is named as clustering property of the FZT.

8.3.2.3. Spread Sensitive Property.
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The spread sensitive property of the fuzzy ranks can be illustrated in the following
simple example. Consider two sample vectors

x1 = [1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 2.5],

x2 = [1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 12.4, 12.5].

Note that there are two sample outliers in the second sample. In spite of the spread
difference between the two sample vectors, the integer-valued crisp rank vectors of x1
and x2 are identical, i.e., r1 = r2 = [1, 2, . . . , 9]. The real-valued fuzzy rank vectors
generated using the Gaussian membership function, contrastingly, are different and
jointly reveal the rank and spread information:

r̃1 = [3.44, 3.63, 3.83, 4.05, 5.69, 5.89, 6.08, 6.26, 6.42],

r̃2 = [3.11, 3.23, 3.37, 3.51, 4.68, 4.84, 4.99, 8.49, 8.50].

It is important to note that the fuzzy rank values are still confined in the range of [1,N ].
This enables us to define those fuzzy ranks close to 1 or N as the extreme-valued

fuzzy ranks, as is practiced in the crisp rank case. In contrast to the crisp ranks,
however, the fuzzy ranks of similarly valued samples are also similarly valued and are
around the local median of their crisp counterparts; while the fuzzy ranks of disparately-
valued samples, such as the two outliers in x2, are very close to their crisp counterparts.

Hence, extreme-valued fuzzy ranks can be used to detect the presence of sample
outliers more accurately than the extreme crisp ranks. Moreover, middle-valued fuzzy
ranks indicate that the corresponding samples are similarly valued and no abrupt
transitions, such as an edge in an image, are present in the input data.

8.3.2.4. Spread Parameter Dependence: It is worth mentioning that different spread
parameter used in the membership function results in different fuzzy ranks. For the
limit cases, we have [15]

lim
γ→+∞

r̃i =
N + 1

2
and lim

γ→0
r̃i = ri, i = 1, 2, . . .,N , (8.24)

where N is the window size and γ is the spread parameter of a general membership
function used in FZT.

The most appropriate spread parameter for generating the fuzzy ranks is application
dependent. Optimization of the spread parameter is feasible and may be required in
certain cases, while empirical values work well in others.

8.4. Fuzzy Generalization of Some Classical Filters

8.4.1. Fuzzy Identical (FI) Filter. The output of crisp identity filter is expressed
as YI = xc, where c is the special index of center sample in the filtering window. The
fuzzy identity filter can be defined as [15]

YFI = x̃C =

∑N

k=1
xkR̃C,k

∑N

k=1
R̃C,k

. (8.25)

Unlike the crisp identity filter, which gives an output identical to the input, the fuzzy
identity filter extracts the spread information from the input signal. That results in better
edge restoration. After applying the fuzzy identical filter, each subgroup is more tightly
clustered around its local means. This results in effective smoothing of undesirable
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Fig. 8.5. Edge restoration of fuzzy identity filter. a) The small noisy edges are suppressed and
the strong edge is restored. b) The small step edge is smoothed. The filtering window size is 9.

Gaussian membership function with spread parameter σ2 = 0.1 is used in filtering.

perturbations in large uniform regions as well as step edge restoration. In the case
of a small step edge, the step transition is smoothed rather than restored. This last
property if the identity fuzzy operator can be applied in image deblocking applications
to remove the blocking artifacts while preserving true more large edges.

8.4.2. Fuzzy WM Filter. Classical WM filter presented above can be written as

YWM = MEDIAN [|w1| ◦ sin g(w1)x1,w2 ◦ sin g(w2)x2, . . . , wN ◦ sin g(wN )xN ] ,

where operator ◦ denotes replication for nonnegative integer weights wi with a new set
of samples {yi = sign (wi)xi, i = 1, 2, . . .N)}. Defining ranks of this novel set and their
fuzzy counterparts the FWM filter can be written as

YFWM =MEDIAN [|w1| ◦ sin g(w1)x̃1,w2 ◦ sin g(w2)x̃2, . . . ,wN ◦ sin g(wN )x̃N ] (8.26)

Presented in literature, the FWM filters proved to be effective in removing heavy tailed
noise while preserving image details.

One of the important properties of the FWM is it unbiasness in estimation of the
inputs mean when input samples are symmetrically distributed. This property is exactly
the same as in classical WM smothers

Typical FWM filter is the FWM high-pass filter, usually used in image sharpening
to extract the image edges, for example, with the weight mask

[ −1 −1 −1
−1 8 −1
−1 −1 −1

]
.

8.4.3. Fuzzy LUM Smoother (FLUM). The classical LUM smoother with param-
eter k 6 (N + 1)/2 is defined by the equation

YLUM =





x(k), rC < k,

xC , k 6 rC 6 N − k + 1,

x(N−k+1), rC > N − k + 1,
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where N is the filtering window size, C is the spatial index of the central sample, and
rC is its crisp rank. Replacing rC with its fuzzy counterpart, we can write the output
of the FLUM filter [15] as

YFLUM =





x(k), r̃C < k,

xC , k 6 r̃C 6 N − k + 1,

x(N−k+1), r̃C > N − k + 1.

(8.27)

Since the FLUM filter incorporates sample spread information, it can more effectively
identify true outliers and improve filter performance. We explain this by the following
example. Consider two sample vectors x1 and x2 as it was plotted n Figs. 8.6 a) and c),
respectively. In x2, two of nine samples are outliners. It is easy to calculate crisp
rank vectors that are identical and therefore independent to the input sample spread.
The real-valued fuzzy rank vectors, however, do reflect sample spread. The similarity
valued samples in a vector have similar fuzzy ranks, which are close in value to local
median of their crisp ranks. Application of the LUM filter to vectors x1 and x2 for
k 6= 1 gives oversmoothing in both vectors, while k < 3 introduces undersmoothing on
x2.In contrast, the choice of k = 3 for the FLUM smoother avoids oversmoothing and
undersmoothing on both sample vectors.

Using equation (8.27), we can define the general FLUM filter as:

YG_FLUM =





x(k), r̃C < k,

x(l), t < rC < h, xC < tl,

x(N−l+1), N − h+ 1 < r̃C 6 N − l + 1, x > tl,

x(N−k+1), r̃C > k,

xC , otherwise,

(8.27a)

where k 6 l 6 h 6 (N + 1)/2, and tl = (x(l) + x(N−l+1))/2. The parameter k controls
the smoothing level, and greater k value introduces stronger smoothing; l controls the
sharpening level, where the smaller l level introduces stronger sharpening; h controls
fine detail preservation, where greater h value preserves larger fine details. The spread
parameter of membership function is also important in filter design.

The statistic properties of FLUM filter, such as breakdown and false-alarm probabil-

ities were investigated in [19]. The first one is the probability of outputting an impulse
given a certain probability of impulse occurrence in the input, and this indicates the
impulsive noise suppression capability in smoothing. The false-alarm probability is the
probability of uncorrupted sample being modified, and indicates the detail preservation
capability of the smoothing.

The analysis of these parameters have shown that breakdown probability for FLUM
Smoother is the same as that of the LUM Smoother, but breakdown probability for
FLUM Sharpener is lower than that of the LUM Sharpener for common parameter l
and h 6= (N + 1)/2. On other hand, the false-alarm probability for FLUM Sharpener
and General FLUM filter is lower than that of LUM Sharpener or General LUM filter,
respectively, for common parameters and h 6= (N + 1)/2. So, such property indicates
that FLUM filters have better detail preservation than the LUM filters, but this property
requires that the spread parameter should be sufficiently large with respect to the input
signal. These characteristics indicate the robustness to the impulsive noise.
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Fig. 8.6. a) sample vector x1, b) crisp and fuzzy rank vector x1, c) sample vector x2, b) crisp
and fuzzy rank vector x2. The fuzzy ranks were obtained using a Gaussian membership function

with σ2 = 1 [15].

8.5. Multidimensional and/or 3D Video Processing Algorithms

8.5.1. Color Imaging Algorithms.

8.5.1.1. VRMKNN and AMN-MMKNN Filters.

We have introduced the Vector Rank M-Type K-Nearest Neighbor (VRMKNN) filter
[9–11]. This filter utilizes multichannel image processing based on the vector approach
[1–3], and the Rank M-Type K-Nearest Neighbor (RMKNN) algorithm [20]. The
VRMKNN filter provides fine detail preservation applying the KNN algorithm [21]
and the combined RM-estimators (see Sec. 6.4) by following way. The redescending
M -estimators with different influence functions are combined with the R- (median,
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Wilcoxon, or Ansari–Bradley–Siegel–Tukey) estimators to obtain sufficient impulsive
noise suppression for each channel by using the vector approach.

The following representation of the KNN filter is often used:

θKNN =
N∑

i=1

aixi/
N∑

i=1

ai with ai =

{
1, if |xi − x| 6 T ,

0, otherwise,

where T is the threshold, xi is the input data sample in a sliding window, and x is the
central element in a window to be estimated. Usually, T is equal to twice the standard
noise deviation as in the Sigma filter [21]. We have proposed another scheme that
employs the influence functions in the combined RM-estimators. For convenience, the
VKNN filter is written below as

θ̂KNN =
1

Kc

N∑

m=1

ψ (ym) ym, (8.28)

where {ym} is the set of the noisy image vectors in a sliding filter window, which
includes m = 1, 2, . . . ,N (N is odd) vectors y1, y2, . . . , yN located at spatial coordinates;
and ψ (ym) is the influence function defined in the simple case as

ψ (ym) =





1, if ym are Kc samples, which values are closest

to the value of the central sample y(N+1)/2,

0, otherwise.

To improve the robustness of the VKNN filter, we use the RM-estimators (6.32)–
(6.34) presented in Section 6.4. Modifying these estimators for 3D vector data, we can
write the Vector Rank M-type K-Nearest Neighbour (VRMKNN) filters in the form
[10, 11]

θ̂
(q)
VMMKNN = MED

{
g(q)
}
, (8.29)

θ̂
(q)
VWMKNN = MED

{
g(q) + g(q)

1

2

}
, (8.30)

θ̂
(q)
V ABSTMKNN = MED





R
(q)
(k), k 6 [Kc/2],

R(q)
(k) +R(q)

(l)

2
, [Kc/2] < k 6 Kc,

k 6 l.





, (8.31)

where θ̂
(q)
VMMKNN , θ̂

(q)
VWMKNN , and θ̂

(q)
V ABSTMKNN represent the outputs of the

VMMKNN, VWMKNN and VABSTMKNN filters, respectively; g(q) and g
(q)
1 are sets

of Kc values of vectors ym, weighted by value in accordance with the used influence

function ψ̃(ym) and closest to the estimate obtained at previous step, θ̂
(q−1)
V RMKNN , in

a sliding filter window; R
(q)
(k) and R

(q)
(l) represent the values of vectors having k and l

ranks among the sliding window elements g(q), which are the members of the set of

Kc number of vectors weighted in accordance with the used influence function ψ̃(ym)

and closest to the estimate obtained at previous step, θ̂
(q−1)
V RMKNN ; {ym} is the set of

the noisy image vectors in a sliding filter window, which includes vectors y1, y2, . . . , yN
located at spatial coordinates (i, j); θ̂

(0)
V RMKNN = y(N+1)/2 is the initial estimate that is

equal to central element in a sliding window; q is the index of the current iteration; and
Kc is the number of the nearest neighbor vectors calculated in the form [10, 11, 22]

Kc =
[
Kmin + a ·Ds

(
y(N+1)/2

)]
6 Kmax. (8.32)
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Here, a controls the fine detail preservation; Kmin is the minimal number of the
neighbors for noise removal; Kmax is the maximal number of the neighbors for edge
restriction and fine detail smoothing; and Ds

(
y(N+1)/2

)
is the impulsive detector defined

as follows [10, 22]:

Ds

(
y(N+1)/2

)
=

[
MED {|y(N+1)/2 − ym|}

MAD

]
+

[
1

2
· MAD

MED {ym}

]
. (8.33)

In equation (8.33), MED (ym) is the median of the input data set {ym} in a sliding
window, and MAD=MED{|ym −MED(ym)|} is the median of absolute deviations from
the median.

The algorithm terminates when t̂heta
(q)

V RMKNN = t̂heta
(q−1)

V RMKNN . The proposed
filtering approach employs an iterative procedure. At the current q-th iteration, the
procedure uses a vector data sample to form a set of elements whose values are closest
to the estimate calculated at the previous step. Subsequently, the procedure calculates
a median of this set or a more complex estimate according to the RM-estimators,
presented in the equations (8.29) and (8.30). Then, it uses this median at the next
(q + 1)-th step as in the previous estimation. The number of neighbors Kc in the vector
sample with closest values is calculated prior to iterations and is kept unchanged during
the iterations for every central element (i, j). It is a measure of the local data activity
within the sliding window and of the presence of impulsive noise at its center element,
and it helps to preserve small features. Iterations have to be terminated when the
current estimate becomes equal to the previous one. From simulations, we found that
the iterations converge after one or two iterations, but their maximal number can attain
4–5, depending on image nature.

Another proposed AMN-MMKNN filter is based on adaptive nonparametric approach
explained in 8.2.2, and determines the functional form of density probability of noise from
data in a sliding filtering window [9, 22]. So, the AMN-MMKNN filter is presented
by combining the Adaptive Multichannel Nonparametric (AMN) filter and the Median
M-Type K-Nearest Neighbor (MMKNN) filter [2, 22]. Such a filter can be written as
in (8.12):

x̂(y)AMN−MMKNN =
N∑

l=1

xVMMKNN
l




h−D
l K

(
y − yl

hl

)

N∑

l=1

h−D
l K

(
y − yl

hl

)



, (8.34)

where xVMMKNN
l values represent the VMMKNN filter, described in equation (8.29),

to provide the reference vector; y is the current noisy observation to be estimated from
given set {y}N , yl are the noisy vector measurements, hl is the smooth parameter that
is determined as follows:

hl = N−q/D

(
N∑

j=1

‖yj − yi‖
)
, (8.35)

where ‖yj − yi‖ is the absolute distance (L1 metric) between the two vectors yi and yj
for ∀yj , j = 1, 2, · · · ,N ; q is a parameter to be determined in the interval 0.5 > q > 0;
D is the dimension of the measurement space (D = 3, for color images); and the function
K(y) is the kernel function that has the exponential form K(y) = exp (− |y|) in the case
of impulsive noise.
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8.5.2.1. Discussion of the Simulation Filtering Results in Color Imaging.
Many filtering approaches exist in color imaging. As it is difficult to analyze

all the existing algorithms, the objective performances and subjective visual results
are compared here with some reference filters, such as VMF, GVDF, AMNF, etc.,
commonly used in literature. To determine the restoration properties and compare
the qualitative characteristics of various color filters, the proposed 3 × 3 VRMKNNF
(VMMKNNF, VWMKNNF, and VABSTMKNNF) with simple, Hampel’s three part
redescending, and Andrew’s sine influence functions, the 3 × 3 AMN-VRMKNNF
filter (AMN-VMMKNNF) with simple influence function, and also the 3 × 3 Vector
Median (VMF), 3× 3 α-Trimmed Mean (α-TMF), 3× 3 Generalized Vector Directional
(GVDF), 3× 3 adaptive GVDF (AGVDF), 5× 5 double window GVDF (GVDF_DW),
3 × 3 Multiple non-parametric (MAMNFE), 3 × 3 adaptive Multichannel nonpara-
metric (AMNF), 3 × 3 adaptive Multichannel nonparametric Vector Median Filters
(AMN-VMF), and two novel ones, named here as adaptive VMF (AVMF) [23] and
fast adaptive similarity VMF (VMF_FAS) [10, 24] were simulated. These filters were
computed and used according to references [1–3, 5–8, 22] to compare them with the
proposed filtering framework. The reason of choice of these filters to compare them with
the proposed ones is that their performance has been compared with various known
color filters.

The widely used 320 × 320 RGB color (24 bits per pixel) «Lena», «Mandrill», and
«Peppers» test images with different texture character were corrupted by impulsive
noise according to the noise model presented in Chapter 5 with intensities varied in the
wide range from 0% to 40% of spike occurrence in each a channel. Table 8.1 shows
some comparative restoration results for several proposed and reference filters for PSNR
performance in the case of the test image «Mandrill».

Tab l e 8.1. PSNR in dB for different filters applied in case of test image «Mandrill».

Impul-
sive
Noise

Percent-
age

VMF VMF_FAS AVMF GVDF
GVDF_DW

VMMKNNF
Simple

VWMKNNF
Simple

AMN-
VMMKNNF

Simple

2 24.111 29.268 24.390 21.038 21.298 24.772 29.039 23.680

4 24.053 27.736 24.316 20.972 21.260 24.644 28.079 23.651

8 23.873 26.044 24.090 20.861 21.172 24.380 26.374 23.543

10 23.7784 25.294 23.974 20.728 21.105 24.202 25.502 23.476

15 23.347 23.680 23.480 20.295 20.954 23.774 23.729 23.285

20 22.793 22.473 22.881 19.769 20.765 23.202 22.713 23.072

30 21.180 20.113 21.209 18.088 20.160 21.777 19.772 22.467

40 19.062 17.899 19.067 15.990 18.885 19.851 17.672 21.331

50 16.952 16.001 16.953 14.055 17.218 17.847 15.885 19.764

Table 8.2 exhibits the simulation results for objective criteria PSNR and NCD,
employing the proposed filtering approach and some of the better reference filters
according to Table 8.1.

Simulation results (see Table 8.2) clearly show that VMF_FAS and VWMKNN
filter with simple cut influence function are the best algorithms in noise suppression
for low noise intensity (from 2% to 10%). In high impulsive noise intensity (from 30
to 50%), the better PSNR criterion values have been obtained by algorithms AMN-
VMMKNN and VMMKNN with simple cut influence function, and for 15% and 20%
spike occurrence, the best algorithm is the VMMKNN (Simple Cut). The similar



1
7
4

C
h
.
8
.
V
e
c
to
r
O
r
d
e
r
S
ta
tis

tic
s
in

M
u
ltic

h
a
n
n
e
l
a
n
d
V
id
e
o
P
r
o
c
e
s
s
in
g

Tab l e 8.2. Comparison for NCD, MAE, and PSNR performances of proposed and reference filters.

Impulsive
Noise

Percentage
Algorithm

NCD MAE PSNR

Mandrill Lena Peppers Mandrill Lena Peppers Mandrill Lena Peppers

5

AVMF 0.0293 0.0096 0.008 7.36 2.39 1.97 24.27 30.95 30.81

VMF_FASr 0.010 0.0045 0.0045 2.54 1.194 1.14 27.21 31.85 31.19

ANF-VMMKNNF 0.035 0.0195 0.017 10.767 5.03 4.42 23.62 29.21 29.21

VMF 0.034 0.016 0.012 8.71 4.29 3.14 24.02 30.07 30.30

VWMKNNF Simple 0.019 0.0096 0.008 4.96 2.55 2.114 27.69 31.45 30.91

VMMKNNF Simple 0.034 0.0169 0.014 8.74 4.44 3.54 24.58 30.22 30.34

10

AVMF 0.031 0.0117 0.0095 7.87 2.97 2.49 23.97 30.09 29.79

VMF_FASr 0.0159 0.0086 0.0081 4.06 2.35 2.07 25.29 28.80 29.01

ANF-VMMKNNF 0.0432 0.020 0.0182 11.04 5.23 4.66 23.48 28.94 28.71

VMF 0.0349 0.0172 0.0132 8.96 4.57 3.49 23.78 29.46 29.44

VWMKNNF Simple 0.0226 0.0128 0.0121 6.13 3.56 3.212 25.50 28.13 27.42

VMMKNNF Simple 0.0359 0.0179 0.0146 9.19 4.73 3.847 24.20 29.64 29.62

15

AVMF 0.0334 0.0141 0.0119 8.60 3.63 3.13 23.48 29.06 28.66

VMF_FASr 0.0223 0.0135 0.0142 5.83 3.70 3.70 23.68 26.28 25.63

ANF-VMMKNNF 0.0443 0.0213 0.0193 11.38 5.46 4.92 23.285 28.59 28.32

VMF 0.0363 0.0185 0.0151 9.43 4.92 3.95 23.35 28.64 28.44

VWMKNNF Simple 0.0268 0.0166 0.0169 7.55 4.75 4.59 23.73 25.87 25.025

VMMKNNF Simple 0.0378 0.0191 0.0162 9.76 5.07 4.26 23.77 28.93 28.71

AVMF 0.0362 0.0166 0.0150 9.49 4.41 3.92 22.88 27.83 27.30

20 VMF_FASr 0.0354 0.0178 0.0161 7.69 5.00 4.84 22.47 24.80 24.45

ANF-VMMKNNF 0.0455 0.0222 0.0209 11.77 5.74 5.26 23.07 28.18 27.82
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Continue Table 8.2.

Impulsive
Noise

Percentage
Algorithm

NCD MAE PSNR

Mandrill Lena Peppers Mandrill Lena Peppers Mandrill Lena Peppers

VMF 0.0384 0.0200 0.0172 10.11 5.42 4.53 22.79 27.58 27.19

20 VWMKNNF Simple 0.0323 0.0207 0.0199 9.07 6.120 5.34 22.71 24.06 24.42

VMMKNNF Simple 0.0399 0.0206 0.0183 10.48 5.54 4.76 23.20 27.96 27.68

30

AVMF 0.0439 0.0236 0.0239 12.00 6.53 6.27 21.21 24.89 24.02

VMF_FASr 0.0427 0.0279 0.0316 11.84 8.09 8.29 20.11 22.19 21.53

ANF-VMMKNNF 0.0487 0.0253 0.0266 12.91 6.69 6.48 22.47 27.04 26.42

VMF 0.0449 0.0253 0.0250 12.30 7.04 6.58 21.18 24.83 23.99

VWMKNNF Simple 0.0429 0.0303 0.0348 13.03 9.23 9.55 19.77 21.44 20.61

VMMKNNF Simple 0.0456 0.0252 0.0256 12.44 6.92 6.63 21.78 25.52 24.63

40

AVMF 0.0546 0.0341 0.0393 15.88 10.07 10.37 19.07 21.45 20.54

VMF_FASr 0.0592 0.0415 0.0509 17.41 12.68 13.59 17.90 19.49 18.65

ANF-VMMKNNF 0.0546 0.0316 0.0384 15.04 8.74 9.06 21.33 24.86 24.07

VMF 0.0550 0.0348 0.0397 15.99 10.26 10.48 19.06 21.44 20.54

VWMKNNF Simple 0.0569 0.0434 0.0520 17.98 13.61 14.46 17.67 19.05 18.24

VMMKNNF Simple 0.0543 0.0334 0.0393 15.60 9.60 10.02 19.85 22.43 21.40

50

AVMF 0.0691 0.0484 0.0606 21.37 15.07 16.33 16.95 18.68 17.70

VMF_FASr 0.0771 0.0586 0.0755 24.07 18.57 20.59 16.00 17.28 16.33

ANF-VMMKNNF 0.0639 0.0419 0.0571 18.54 12.19 13.39 19.76 22.37 21.34

VMF 0.0692 0.0485 0.0607 21.42 15.13 16.36 16.95 18.69 17.70

VWMKNNF Simple 0.0736 0.0593 0.0745 24.09 19.40 20.88 15.89 16.99 16.20

VMMKNNF Simple 0.0664 0.0452 0.0596 20.27 13.72 15.21 17.85 19.76 18.63
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numerical simulation results for PSNR criterion have been obtained in filtering of other
test images: «Pepper» and «Lena» [10, 22]. Analysing the data presented in Table 8.2,
one can see that, in low impulsive noise, intensity of (5%) the newest AVNF filter has
some advantage in comparison with the filters based on the proposed approach, as well
as others reference filters, VMF and AVMF, according the criteria used. For high-noise
corruption intensity, when spike occurrence is more than 15%-20% (10%, in the case of
test image «Mandrill»), the proposed algorithms presents the best performance in the
PSNR criterion. It is easy to see that the NCD performance presented in this table
favor the VMF_FAS and AVNF for low impulsive noise corruption, less than 20%. For
high-noise corruption intensity, it is difficult to select the best filter. We can only note
that for «noisy» type images, such as «Mandrill», the NCD performance values of the
VMF_FAS filter and proposed VWMKNNF (Simple) filter are very similar. Finally, for
very high impulsive noise corruption when the percentage is more than 40%, the better
NCD performance values are presented by ANF-VMMKNN filter. It is necessary to
note that when the objective criteria MAE and NCD show some advantage in favor of
the VMF_FAS and AVNF filters, its PSNR values are less by 0.7–1.5 dB in comparison
with what the AMN-VMMKNN filter gives.

So, the presented comparison of the objective criteria shows that the restoration
performance of VRMKNNF and AMN-VRMKNNF is often better than that of other
analyzed filters, at least for high impulsive noise corruption, more than 10-15 %.

Figure 8.7 exhibits the processed images (and its zoomed parts) for test image
«Mandrill» explaining the impulsive noise suppression and detail preservation according
to Table 8.2.

Fig. 8.7. Subjective visual quantities of restored color image «Mandrill», a) Original image
«Mandrill»; b) Input noisy image corrupted by 10% impulsive noise in each channel; c)
VWKNNNF (Simple) filtered image; d) VWKNNNF (Simple) filtered zoom part of (c), e)
VMF_FAS filtered image; f) VMF_FAS filtered zoom part of (e), g) AMN-VMMKNNF filtered

image, and h) AMN-VMMKNNF filtered zoom part of (g).

One can see, analyzing these error images, that the VNF_FAS filter present slightly
better visual subjective performance in fine detail preservation, but, at the same time,
it shows worse impulsive noise suppression in comparison with proposed filtering tech-
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nique. The proposed VMMKNNF and AMN-VMMKNNF appear to have a good subjec-
tive quality. The VWKNNNF (Simple) output is characterized by sufficiently good fine
detail preservation and noise suppression as well. Another proposed AMN-VMMKNNF
presents excellent noise suppression but some image details are blurred. These subjective
results confirm objective performances presented in the Tables 8.1 and 8.2.

The parameters for VRMKNNF and AMN-VRMKNNF filters and influence func-
tions were found after numerous simulations in different test images degraded by
impulsive noise. The values of parameters of the proposed filters were 0.5 < a < 15,
Kmin = 5, and Kmax = 8, and the parameters of the influence functions were: r 6 81
for Andrews sine, and α = 10, β 6 90 and r = 300 for Hampel three part redescending.
The idea was to find the parameter values when the values of the PSNR and MAE
criteria would be optimal. The Kmin and a values were varied from 1 to 8, and from 0
to 20, respectively. The simulation results have shown that the best performances were
obtained when Kmin > 5 and a > 2, respectively. The parameters α, β, and r were found
for different influence functions, for example, in the case of the Hampel function the
optimum value α was equal to 14 for image «Mandrill», 10 for image «Lena», and 12 for
video sequence «Miss America», and the value r is changed from 300 for «Mandrill»,
280 for «Lena», and 290 for «Miss America». Therefore, there are some variations of
about ±10% of the PSNR performance with the use of other parameter values, which
are different from those presented here.

Finally, we have standardized these parameters as constants to realize the implemen-
tation of the proposed algorithms for real-time applications.

We also applied the proposed filters to process color video sequences presented in
QCIF (Quarter Common Intermediate Format). This picture format uses 176× 144 (24
bits per pixel) luminance pixels per frame. Three QCIF video color sequences «Miss
America», «Flowers», and «Foreman» have been filtered to demonstrate that the proposed
algorithms can potentially provide a real-time filtering solution [10]. The test video color
sequences were contaminated by impulsive noises with a different percentage of spike
occurrences in each channel. The restoration performance (PSNR, MAE, and NCD) in
a form of its mean and root-mean-square (RMS) ones over the video sequence «Flowers»
are presented in Table 8.3.

This table shows the comparison results for different reference and proposed filters
applied in processing of the sequence «Flowers» contaminated by 5%, 10%, and 20%
impulsive noise. One can see that for low impulsive noise contamination (5% and 10%)
better performance is achieved by the VMF_FAS and AVMF filters.

At the same time, we may conclude that noise suppression performance and the
PSNR criterion obtained by the proposed filtering technique are often very similar to
those achieved by previously mentioned reference filters. In the case of 20% impulsive
noise contamination, the AMN-VMMKNNF and VMMKNNF (Simple) are the best
algorithms from the viewpoint of noise suppression quality.

Since the frames in the sequences have different image texture and changing object
structure, and the noise samples vary from frame to frame, analyzing the whole video
sequence in terms of mean and RMS of different criteria, we have confirmed the
robustness and statistical significance of the proposed technique in noise suppression and
fine detail preservation. Figure 8.8 shows the filtered frame illustrating subjective visual
quality for sequence «Flowers» and conforming good quality of the processed frame by
the proposed filters.

8.5.2. 3D Ultrasound Filtering. The possibility to process 3-D images presents
a new application where it is necessary to improve the quality of 3-D objects inside an
image, suppressing a noise of different nature.
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Tab l e 8.3. Mean values and root-mean-square (RMS) values for the PSNR, NCD and MAE

criteria over the video sequence «Flowers» for 5%, 10%, and 20% of impulsive noise
contamination.

Impulsive
Noise

Percentage
Algorithm

Mean
PSNR

RMS
PSNR

Mean
NCD

RMS
NCD

Mean
MAE

RMS
MAE

VMF 27.67 0.43 0.0113 0.0010 5.35 0.37

GVDF 25.54 0.33 0.0144 0.0012 6.72 0.38

AMNF 25.61 0.41 0.0156 0.0012 7.49 0.40

AVMF 28.00 0.46 0.0091 0.0009 4.30 0.34

VMF–FAS 30.61 0.54 0.0031 0.0003 1.47 0.15

5
AMN–VMMKNNF

Simple
25.36 0.37 0.0159 0.0013 7.51 0.39

VMMKNNF Simple 27.87 0.40 0.0119 0.0011 5.72 0.39

VWMKNNF Simple 29.39 0.28 0.0063 0.0005 3.15 0.16

VMF 27.08 0.38 0.0120 0.0011 5.75 0.40

GVDF 24.36 0.35 0.0156 0.0011 7.42 0.33

AMNF 25.40 0.29 0.0168 0.0012 8.19 0.39

AVMF 27.32 0.40 0.0102 0.0010 4.88 0.36

VMF–FAS 27.71 0.32 0.0058 0.0004 2.76 0.13

10
AMN–VMMKNNF

Simple
25.47 0.28 0.0164 0.0013 7.75 0.41

VMMKNNF Simple 27.20 0.36 0.0126 0.0011 6.16 0.40

VWMKNNF Simple 25.86 0.33 0.0097 0.0006 4.94 0.18

VMF 25.02 0.34 0.0145 0.0013 7.08 0.46

GVDF 21.83 0.59 0.0193 0.0006 9.53 0.35

AMNF 23.57 0.27 0.0216 0.0012 10.96 0.39

AVMF 25.12 0.34 0.0134 0.0012 6.56 0.432

VMF–FAS 23.66 0.26 0.0123 0.0008 5.93 0.24

20
AMN–VMMKNNF

Simple
25.13 0.31 0.0178 0.0015 8.56 0.47

VMMKNNF Simple 25.21 0.28 0.0150 0.0012 7.51 0.43

VWMKNNF Simple 21.35 0.38 0.0165 0.0004 8.66 0.31

We now consider a monochrome 3-D image Y (i, j, k), where i and j represent the
2-D spatial axes, and k is either the time coordinate or the third coordinate axis of the
3D image.

Here, we use the combined RM (Rank M-type) – estimators, described in Section
6.4, applying them to 3-D filtration [25–27]:
the 3-D MM-KNN (Median M-type K-Nearest Neighbor) filter

Ŷ
(w)
MMKNN (i, j, k) = MED

{
h(w)(i+ l, j +m, k + n)

}
, (8.36)
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Fig. 8.8. Subjective visual qualities of restored color frame of video sequence «Flowers», a) Origi-
nal test frame «Flowers», b) Input noisy frame (corrupted by 10% impulsive noise in each a chan-
nel), c) AVMF filtering frame, d) AVMF filtering zoom part of (c), e) VMF_FAS filtering frame,
f) VMF_FAS filtering zoom part of (e), g) VMMKNNF filtering frame (Simple), h) VMMKNNF
filtering zoom part of (g), i) AMN-VMMKNNF filtering frame, j) AMN-VMMKNNF filtering
zoom part of (i), k) VWMKNNF filtering frame (Simple), l) VWMKNNF filtering zoom

part of (k).

the 3-D WM-KNN (Wilcoxon M-type K-Nearest Neighbor) filter

Ŷ
(w)
WMKNN (i, j, k)=MED

i6j

{
h(w)(i+l, j+m, k+n) + h(w)(i+l1, j+m1, k+n1)

2

}
, (8.37)

and the 3-D ABSTM-KNN (Ansari–Bradley–Siegel–Tukey M-type K-Nearest Neighbor)
filter

Ŷ
(w)
ABSTMKNN (i, j, k) =

= MED
i6j6k





h(w)(i+ l, j +m, k + n), i, j, k 6

[
N

2

]
,

h(w)(i+ l, j +m, k + n)

2
+

+
h(w)(i+ l1, j +m1, k + n1)

2

,
[
N

2

]
< i.




, (8.38)

where h(w)(i+ l, j +m, k + n) and h(w)(i+ l1, j +m1, k + n1) are the sets of Kc values

of voxels weighted in accordance with the influence function ψ̃(X) in a rectangular 3-D
cube slipping under filtration and containing voxels closest to the estimation obtained

at the previous step, Ŷ
(w−1)
RMKNN (i, j, k). The initial estimation is Ŷ

(0)
RMKNN (i, j, k) =

= Yspeckle(i, j, k), and Ŷ
(w)
RMKNN (i, j, k) denotes the estimate at the iteration w. Here,

Yspekle(i, j, k) is the 3-D image contaminated by noise in a rectangular 3-D grid of
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size M1 ×M2 ×M3. Kc is the current number of the nearest neighbor voxels defined
similarly to equation (7.51), and noise detector DS(i, j, k) is presented in equation (7.52).

The algorithms finish when the condition Ŷ
(w)
RMKNN (i, j, k) = Ŷ

(w−1)
RMKNN (i, j, k) is

fulfilled (subscripts RMKNN denotes the MMKNN, or WMKNN, or ABSTMKNN).

In the filters presented, the following influence functions are used: the simple cut, the
Hampel’s three part redescending, the Andrew’s sine, Tukey biweight, and theBernoulli.

Several parameters that characterize 3-D RM-KNN filters and influence functions
were found after numerous simulations using a 3 × 3 × 3 grid. The problem consists
in finding the parameters values for which the PSNR and MAE criteria attain their
optima. It was found that Kmin=5 and Kmax = 24 for any of 3-D RM-KNN filter are
optimum. The parameters of influence functions were determined: a = 8 and r = 255
for the Simplest cut function; a = 8, α = 200, β = 230, and r = 256, for the Hampel
function; and a = 10 and r = 255, for the Andrew’s sine function, the Tukey function,
and the Bernoulli function.

During the investigations of 3-D filtering algorithms, US images were contaminated
by impulsive noise that modeled a noise influence in communication channel. As it has
been mentioned, the speckle noise is natural for US transducers. The 3-D RM-KNN
filters with different influence functions have been evaluated, and their performance has
been compared with known nonlinear 2-D filters, which were adapted to 3-D image
processing. The following filters were applied as test ones for comparison: the modified

α-Trimmed Mean [28], Ranked-Order (RO), Comparison and Selection (CS) [29],
Multistage Median (MSM1 to MSM6) [30] MaxMed [31], Selective Average (SelAve),
Selective Median (SelMed) [32], and Lower-Upper-Middle (LUM, LUM Sharp, and
LUM Smooth) [33] filters. Initial US 3D sequence of an organ of the size of
640 × 480 × 90 voxels (i.e., 90 frames of 2D image) was distorted by impulsive noise
of random spikes with 5, 10, 15, 20, and 30% probability of appearance, and with the
natural presence of speckle noise in the 3D image.

Table 8.4 shows the performance results of proposed filters and comparative results
of different non linear filters applied to a frame of an original sequence presenting the
xz plane. It is easy to see that the proposed method provides the better filtration quality
in accordance with the PSNR and MAE criteria when a noise level is of 15% or high.
Additional experiment was realized in the same sequence when it was degraded with
0.05 or 0.1 values of variance of speckle noise added to the natural speckle noise of the
sequence. The performance results are depicted in the same table where one can see
that the 3-D MM-KNN filters provide similar results in comparison to Ranked Order
and Modified α-Trimmed Mean filters, and in some cases the proposed filters provide
better performance.

Figure 8.9 illustrates this conclusion: the visual results in terms of restored and
error images are shown, confirming that the RMKNN filters can suppress an impulsive
noise and reduce the speckle noise better than other filters.

Other experimental investigations concerned different voxels cube configurations to
provide better noise reduction.

Figure 8.10 shows nine voxel configurations used in the 3-D filtering algorithms. It is
evident that the application of the smaller number of voxels in the filtration process would
result in a significant reduction of the processing time. The implementation of such cube
configurations in the proposed filters and α-Trimmed Mean filter is shown in Table 8.4
where, as is seen, the MM-KNN filter provides better results in comparison with the
α-Trimmed Mean filter. In addition, it is evident that the g and i voxel configurations
provide better suppression of high-intensity noise, whereas a and b configurations are
efficient at a low noise intensity.
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T a b l e 8.4. Performance results of different filters in a frame of a US sequence degraded with impulsive noise (5, 10, 25, 20, and 30%), or
with speckle noise (variance σ2

ε: 0.05 and 0.1).

3-D Filters 5% 10% 15% 20% 30% σ2
ε = 0.05 σ2

ε = 0.1

PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE

Modified α-Trimmed Mean 24.9 7.5 24.9 7.1 24.8 7.2 24.7 7.4 24.3 7.8 20.4 15.14 19.1 18.7

Ranked Order 26.5 6.7 26.4 6.7 26.4 6.8 26.3 6.9 26.0 7.3 21.6 14.5 19.8 18.2

MSM1 28.9 4.3 28.5 4.5 27.7 4.8 26.7 5.3 23.9 7.1 20.6 17.6 18.1 23.7

MSM2 28.1 5.1 27.8 5.29 27.2 5.6 26.2 6.0 23.6 7.7 20.5 17.8 18.0 23.7

MSM5 29.4 3.8 28.8 4.0 27.6 4.4 26.0 5.2 22.6 7.6 19.6 20.2 17.0 27.4

MSM6 28.3 5.1 28.25 5.2 28.0 5.3 27.7 5.4 26.3 6.3 22.1 14.7 19.7 19.4

MaxMed 27.1 6.2 26.2 6.8 24.9 7.8 23.2 9.2 19.9 13.8 18.6 24.2 16.0 32.9

SelMed 27.4 5.6 27.0 5.9 26.7 6.2 26.3 6.4 25.4 7.1 20.8 15.8 19.0 20.1

LUM Smooth 29.9 2.8 28.9 3.1 27.3 3.8 25.3 4.9 21.0 8.8 17.95 25.1 15.4 33.8

LUM 18.6 15.5 18.2 16.2 17.9 17.1 17.6 17.7 17.6 17.7 15.5 31.4 14.4 36.7

MM-KNN CUT 28.8 4.3 28.5 4.6 28.2 4.8 27.9 5.1 27.2 5.8 21.6 15.2 18.9 21.0

MM-KNN HAMPELL 28.8 4.3 28.5 4.6 28.2 4.9 27.9 5.2 27.2 5.8 21.6 15.3 19.0 20.8

MM-KNN BERNOULLI 28.4 4.6 28.2 4.9 27.9 5.2 27.7 5.5 27.0 6.1 22.7 13.3 20.1 17.8
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Fig. 8.9. Visual results in a frame of a US sequence. a) original image, b) image degraded by
30% of impulsive noise, c) restored image by LUM filter Smooth, d) error image produced by
LUM filter Smooth, e) restored image by MSM5 filter, f) error image produced by MSM5 filter,
g) restored image by filter MMKNN (Hampel), h) error image produced by MMKNN (Hampel).

8.5.3. 3D Vector Filters. We denote a current image voxel as Y (i, j, t), where
(i, j) and t indicate the spatial and temporal position in the video sequence, respectively,
and consider a 3D sliding 3 × 3 × 3 window around (i, j, t). Such a sliding window is

applied to compute the filtered value Ŷ (i, j, t) in the video sequence.
In accordance with statistics rules, all the voxel values from the 3D window are

ordered in a one dimensional array (in any particular order) [2]

{xL} = (x1,x2, . . . ,xN )t. (8.39)

In the case of a 3D sliding window 3 × 3 × 3, N is equal to 27. Here, we use the
directional processing ordering technique as ordering criteria [1].

Below we propose two methods for processing of video sequences [34–36]:
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Fig. 8.10. Different configurations of processing cube.

T ab l e 8.5. Performance results for different cube configurations in a frame of US sequence
degraded with impulsive noise.

Impulsive noise
Voxel

configuration
10% 20% 30%

MMKNN Cut Filter

PSNR MAE PSNR MAE PSNR MAE

a 31.18 3.64 28.41 4.54 23.90 6.99

b 31.31 3.77 29.41 4.42 25.36 6.33

c 29.59 4.80 28.77 5.28 26.50 6.50

d 29.62 4.70 28.86 5.16 26.60 6.35

e 28.51 4.81 28.71 5.29 26.47 6.50

f 29.50 4.81 28.68 5.30 26.45 6.51

g 28.97 4.75 28.43 5.23 27.10 6.13

h 28.76 4.89 28.19 5.38 26.89 6.29

i 28.52 4.56 27.92 5.14 27.22 5.82

Modified α-Trimmed Mean Filter

a 30.08 4.66 26.32 6.98 22.28 11.66

b 30.85 4.36 28.24 5.69 24.16 9.17

c 29.63 4.96 28.75 5.49 26.14 7.44

d 29.73 4.84 28.88 5.35 26.24 7.29

e 29.54 4.97 28.68 5.49 26.10 7.45

f 29.52 4.98 28.66 5.50 26.08 7.46

g 28.65 5.41 28.29 5.68 26.86 6.86

h 28.41 5.57 28.04 5.85 26.65 7.03

i 26.04 7.41 25.75 7.76 25.22 8.59
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a) first filtering method: The voxel values are sorted in xL according to their difference
with a current one Y (i, j, t) to get a new 1D array xl = (x(1),x(2), . . . ,x(N))

t, where
x(1) = Y (i, j, t) is the centrally located in the set of voxels for sliding 3D window, and
x(i) i = 2, . . . ,N , are voxels that satisfy to the condition A(x(1),x(i)) 6 A(x(1),x(j)),
j = 2, . . . ,N , where A is the angle between the multichannel voxels. So, the novel
1D array can be written as xl = (x(2), . . . ,x(N))

t. The set of the K-Nearest Neighbor
vectors with respect to central voxel is obtained as

{x(1),x(2), . . . ,x(K)}t = V DKNNF [x(2), . . . ,x(N)]
t,

1 6 K 6 N.
(8.40)

The first K terms of the ordered sequence {x(i)}t constitute the output of the VDKNN
(Vector Directional K-Nearest Neighbor) filter, which produces a set of vectors with
approximately same direction. Finally, the magnitude processing step is applied to obtain
a single output vector for each voxel. It is done by VMF (Vector Median Filter) [4]
forming the VVDKNNVMF to process video sequence:

VMF{x(1),x(2), . . . ,x(K)}t = xVMF ; (8.41)

b) second filtering method: Vectors are ordered as follows:

n∑

i=1

A(xBD,xi) 6

n∑

i=1

A(xj ,xi), ∀j = 1, 2, . . . ,n, (8.42)

where A is the angle among vectors xi and xj . The vector xBD is found according
to criterion of minimum deviation among vectors (minimum error estimated from angle
location) that gives the Basic Vector Directional Process (BVDP). Finally, the video
generalized vector directional filter (VGVDF) selects a set of the vectors, which present
the minimum deviation with respect to other vectors [1]:

xD = ℑ{x(1),x(2), . . . ,x(K)} = ℑ{V GVDF [x1,x2, . . . ,xN ]}. (8.43)

So, the VGVDF produces a set of vectors with similar directions and this set should
be processed after by a magnitude algorithm ℑ to form an output vector (output color
voxel). To enhance the characteristics, we propose to use an impulsive detector in the
VGVDF. The detector noise value V al is determined in the form [22]

V al =

∥∥∥∥∥x(N+1)/2 − 1

K

K∑

i=1

x(i)

∥∥∥∥∥ (8.44)

as the absolute distance between the central sample x(N+1)/2 and mean of the first K
directionally ordered vectors x(1),x(2),. . . . ,x(K) obtained in the VGVDF and associated
with the smallest angles α1 6 α2 6 . . . 6 αK , where αj is found as

∑n
i=1A(xj ,xi),

∀j = 1, 2, . . . ,K, for K 6 n.
The impulsive noise detector compares the value Val with a threshold Tol to

determine the central voxel status and realizes the following processing procedure:

IF V al > Tol THEN x(N+1)/2 is impulse

ELSE is noise− free
(8.45)

If this voxel is impulse, the magnitude processing algorithm (median filter) works;
in the other case, the output voxel is not changed.



8.5. Multidimensional and/or 3D Video Processing Algorithms 185

During the simulations, the color video sequences «Miss America» and «Flowers»
were tested. They have been corrupted by impulsive noise of different intensity in each
channel of a color frame.

The PSNR, MAE, and NCD criteriа were applied to characterize the noise sup-
pression, fine detail and edge preserving, and color chromaticity preservation in each
algorithm.

Filters used for comparison were: Median Filter adapted to 3D processing, de-
noted as «Video-MF»; Video a−trimmed mean (VATM) filter; K-Nearest neighbor
filter (KNNF_1), which was implemented using 3D window; KNNF_2 [37], using
the Euclidian distance to order the voxel values and Cross×Cross×Cross window to
process the video sequence; video adaptive vector median filter (VAVMF) adapted to
video processing. The adaptation in Vector median filter [4] was proposed to process
the video sequences realizing Video-vector median filter (VVMF). The proposed Video
vector directional K-nearest neighbor vector median filter (VVDKNNVMF) uses the
first proposed filtering method. The parameter value K = 7 was chosen according to
optimal PSNR values. The video adaptive vector directional median filters (VAVDMF_1,

VAVDMF_2 and VAVDMFATM) use the second proposed filtering method. Filter
VAVDMF_1 is applied to each frame in the video color sequence. The parameters K = 5
and Tol = 20 were chosen according to maximum of PSNR. Filter VAVDMF_2 applies
3D window, and parameters K = 5 and Tol = 18 were found according to optimum of
criterion PSNR. In both algorithms, if central voxel is noisy, the median filter processing
was applied. Finally, the VAVDMFATM filter uses a 3D window to process the sequence,
and parameters and were found according to maximum values of PSNR (if central voxel
is noisy, the VATM filter is used). Parameters values K and Tol found to process the
sequence «Flowers» were optimized according to criterion of maximum for PSNR value,
the same parameters were also applied in processing of the sequence «Miss America»
obtaining the best results too. Table 8.6 exposes the PSNR values for VATM and
VAVDATM filters in case of «Miss America» frames corrupted by 15% impulsive noise.

Tab l e 8.6. PSNR values for VVMF, VATM, and VAVDATM algorithms for «Miss America»
frames with 15% of impulsive noise.

Frame2 Frame10 Frame20 Frame30 Frame40

VVMF 35.11 33.61 34.14 34.49 33.87

VATM 35.28 33.90 34.44 34.74 33.97

VAVDATM 36.22 34.94 35.37 35.69 34.93

Frame50 Frame60 Frame70 Frame80 Frame90

VVMF 34.70 34.75 33.30 33.73 34.50

VATM 34.95 35.05 33.51 34.17 34.76

VAVDATM 35.92 36.06 34.45 35.14 35.73

Frame100 Frame110 Frame120 Frame130 Frame140

VVMF 32.71 34.55 34.90 33.98 34.84

VATM 33.08 34.80 35.12 34.22 35.04

VAVDATM 33.82 35.78 36.30 35.22 36.08

Analyzing Table 8.6 one can see that the best numerical results in 15% corruption
is given by the novel VAVDATM filter, showing better noise suppression in medium
percentages of corruption «Miss America» sequence during whole video sequence.
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Similar results are presented in Table 8.7 for the MAE criterion.

Tab l e 8.7. MAE values for VVMF, VATM, and VAVDATM algorithms for «Miss America»
frames with 15% impulsive noise.

Frame2 Frame10 Frame20 Frame30 Frame40

VVMF 2.27 2.96 2.61 2.50 2.86

VATM 2.38 2.99 2.71 2.63 2.92

VAVDATM 1.46 1.83 1.66 1.61 1.81

Frame50 Frame60 Frame70 Frame80 Frame90

VVMF 2.42 2.50 3.11 2.82 2.60

VATM 2.53 2.57 3.13 2.86 2.68

VAVDATM 1.54 1.54 1.97 1.76 1.65

Frame100 Frame110 Frame120 Frame130 Frame140

VVMF 3.21 2.47 2.53 2.93 2.48

VATM 3.20 2.55 2.60 2.95 2.57

VAVDATM 2.14 1.57 1.51 1.81 1.53

This table exposes MAE values and confirms that the best numerical results in the
case of 15% corruption is given by the VAVDATM, which provided better detail and
edge preservation in «Miss America» sequence during the whole video sequence.

Figure 8.11 demonstrates the NCD criterion measure, which characterizes color
preservation property in a video color sequence «Miss America». The best algorithm
according to this criterion is realized by novel VAVDATM filter practically for all levels
of impulsive noise percentages.

Fig. 8.11. NCD values for different percentages of impulsive noise in the case of «Miss America»
frame.

Other implementations using optimized parameters to present better results were:
VVMF, Video-MF, and VATM also achieved good performances with similar character-
istics for all these algorithms. Analysis of the filtered images presented in Fig. 8.12



8.5. Multidimensional and/or 3D Video Processing Algorithms 187

Fig. 8.12. Filtered images in the case of 15% contamination by impulsive noise in the «Flowers»
color video sequence.a) VATM filtered and error images; b) Proposed VVMF filtered and error
images; c) KNNF_2 filtered and error images; d) Proposed VAVDATM filtered and error images.

demonstrates good visual subjective performance in preservation of the video color
sequences using proposed filtering techniques.

8.5.4. Fuzzy Vectorial Techniques in 3D Filtering of Gaussian Noise. As it was
discussed in the fifth chapter of the book, the additive noise can be modelled as Gaussian
one. So, the problem consists of development of the framework that should be applied
to suppress the influence of such noise. Another additional difficulty is the existence of
small fine details and edges in the image or motions of the objects if near fames are
being involved together in processing stage. The preprocessing stage in this case is to
detect such motion or distinguish it on the background of plane areas in another part
of image or frame. There exist numerous applications of the motion detection. It can
be used for surveillance purposes, e.g., to monitor a room, in which there no motion is
supposed, or the detection results can be useful as the input data for more advanced,
higher level video processing techniques, such as the tracking of objects through time.

In our proposal, the motion detector combines the membership degree appropriately
using defined fuzzy rules. The membership degree of motion for each pixel in a
3D sliding window is determined by the proposed membership function. Both fuzzy
membership function and fuzzy rules are defined in such a way that the performance of
the motion detector is optimized in terms of its robustness to a noise.

As it was explained, fuzzy image processing has three main stages: 1) image
fuzzification, 2) modification of membership values, and 3) image defuzzification. Once
the image data were transformed from pixel values plane to the membership values plane
known as fuzzification, the fuzzy techniques should be employed that can be a fuzzy
clustering, a fuzzy rule based approach, a fuzzy integration approach, etc.

There exist various techniques to detect pixel-by-pixel changes. The simplest is to
subtract the color levels of successive frames, and to conclude that the pixel has changed
comparing with some threshold.

Video denoising is usually realized by temporal processing only [37–39], or spatial
temporal filtering [40–43]. Another approach consists in the use of the robust techniques
designed in the 3D processing of video sequences. The main drawback of this approach
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is that some of these algorithms have expensive requirements to hardware and software
because of filtration up to three images at same time [44]. The approach proposed
here applies adequate mathematical operations to consume less computing time, and are
realized dividing different operations in accordance to proposed membership functions.
Additional advantage of the filtering framework is that only two frames (past and
present) to reduce the requirements in a complete processing system are used. Also, to
confirm the effectiveness of the approach the comparison with other methods is made.

8.5.4.1. Architecture of Spatial-Temporal Filter.

Figure 8.13 exposes the proposed denoising scheme in spatial-temporal filtering.
According to the figure, at the initial step, the histogram of the first frame is formed
employing the angle deviations, and after that, the standard deviation (SD) is calculated.
This value is used in temporal algorithm as an initial one, adapted during processing.

Fig. 8.13. Proposed denoising scheme based in spatial-temporal techniques

The filtered frame in such video sequence will be the past frame in the temporal
algorithm. Here, only the past and present frames are employed to produce an output
filtered image, which will be the past frame (t− 1) in a recursive manner of the actual

one at time t, and, at the same time, it is processed in a final step by the spatial
algorithm to result in the Spatial-Temporal Denoised Frame.

8.5.4.2. First Frame Procedure.

The procedure is divided into three steps: Histogram Calculation, Noise Estimation,
and Spatial Algorithm Operations. The Past Frame, as the first frame, should be
processed first.

The 3 × 3 window processing is used to calculate the mean value xβ (β = Red,
Green, Blue are the RGB planes of a color image). After that, an angle deviation
(distance) among two vectors θñ = A(xβ ,xc) is calculated, where first vector is the
formed mean value xβ, and the other one is the central pixel of the sample. Due to
color image representation, the angle can be in the interval π/2. The procedure of noise
estimator is as follows: θc 6 π/2, then the histogram is increased by «1», otherwise is

«0». Once obtaining the Histogram, the probabilities of occurrence of each of the values;
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the median value of the probabilities µ =
∑
j
jpj , the variance σ2

β =
∑
j

(j − µ)2pj , where,

j = 0, . . . , 255, and SD σβ =
√
σ2
β , are to be calculated. The latter parameter is used in

the noise estimator and denoising procedure at the first step.
Having the value of noise intensity, the processing of the first frame of the video

sequence is run. Two kinds of windows processing that are shown in Figure 8.14 are
employed in the proposed procedure.

Fig. 8.14. Windows processing used by Spatial Filter.

Let denote by θi = A(xi,xc) the angle deviation of xi with respect to xc, where
i = 0, 1, 2, . . .,N − 1, i 6= c, N = 8 (3 × 3 window), and Ñ = central pixel. Let the
angles be numbered as shown in Fig. 8.14 b, which can be helpful in ordering when
uniform areas should be detected, so the following considerations can be applied:

IF (θ1 AND θ3 AND θ4 AND θ6 > τ1)

OR (θ0 AND θ2 AND θ5 AND θ7 > τ1)

THEN «Mean Weighted Filtering Algorithm»,

ELSE «Spatial Filtering Algorithm»,

where τ1 is a threshold defined as 0.1. The «AND» operation is defined as «Logical
AND», the «OR» operation is «Logical OR» [13, 45].

8.5.4.3. Mean Weighted Filter.

This filter is defined by next expression:

yβout =

[
N−1∑

i=0,i6=c

xβi

(
2

1 + exp(θi)

)
+ xβc

]

[
N−1∑

i=0,i6=c

(
2

1 + exp(θi)

)
+ 1

] , N = 8 (8.46)

and realizes a fast processing in the case of Gaussian noise, weighting the central
pixel with the highest value, so it smoothes sufficiently the uniform regions. If it is
not possible to filter the samples applying Mean Weighted Algorithm, the Spatial Filter
should be used, providing good reference values before the temporal filtering.

8.5.4.4. Spatial Filter.

Here, the procedure is separated in each a color plane to process them independently,
obtaining values σβ . The values σβ are used later in the special procedure, where the
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Standard Deviations are adapted locally. Operations to realize this point are developed
as follows:

1. Calculate the probability of each a sample inside the 5 × 5 window processing
(Fig. 8.14a), and calculate a mean value for this window xβ5×5.

2. Use a mean value xβ5×5 for obtaining the variance for 5× 5 samples, and finally,
to calculate the local SD in each a plane σβ (β = R,G,B).

3. Use the SD obtained in entire frame and for each sample of this frame and compare
them. If σβ < σ′

β, then σβ = σ′
β, otherwise σ

′
β = σβ .

A threshold value according to better experimental values of PSNR and MAE criteria
was chosen as Tβ = 2σβ .

The increase in the performance of Spatial Filtering Algorithm can be achieved using
the fuzzy values that represent relationship among the pixels to clarify the noise presence
in a given sample.

For each pixel x(i, j) of a sample taken, we find eight neighbours, which corresponds
to any of the directions: N = North, E = East, S = South, W = West, NW =
North–West, NE = North–East, SE = South–East, SW = South–West [17].

Let Aβ(i, j) be a given plane of the input noisy image for any channel β = (R,G,B).
Then the gradient in this plane can be defined as:

∇(k,l) = |Aβ(i+ k, j + l) −Aβ(i, j)| , k, l ∈ {−1, 0, 1 } ,
where the pair (k, l) corresponds to one of the eight directions and these gradients are
called «main gradient values» and the point (i, j) is called «the centre of the gradient

values». To avoid blur in presence of an edge, it has been proposed to use additionally
two «derived gradient values». These three gradient values for a certain direction
are finally connected together into one single general value called «fuzzy gradient

value». The two derived gradient values in the same direction as the main gradient, are
determined by its centres making a right angle with the direction of the corresponding
main gradient. This procedure is illustrated in Fig. 8.15 [17].

Fig. 8.15. Main and derived directions to Vectorial and Gradient values.

Using Fig. 8.15 and Table 8.8 one should define the following variable γ =
= NW ,N ,NE,E,SE,S,SW ,W . Now, the pixels should be treated as the vectors to
employ the directional processing. Applying the gradient and vectorial values, we can
obtain «fuzzy vectorial gradient values» that should be defined by Fuzzy Rules.



8.5. Multidimensional and/or 3D Video Processing Algorithms 191

Tab l e 8.8. Involved Vectorial-Gradient Directions to Calculate the Fuzzy Vectorial.

Direction Main Vectorial-Gradient Involved Derived Vectorial-Gradient Involved

NW (i, j), (i− 1, j − 1) (i+ 1, j − 1), (i− 1, j + 1)

N (i, j), (i− 1, 1) (i, j − 1), (i, j + 1)

NE (i, j), (i− 1, j + 1) (i− 1, j − 1), (i+ 1, j + 1)

W (i, j), (i, j − 1) (i− 1, j), (i+ 1, j)

E (i, j), (i, j + 1) (i− 1, j), (i+ 1, j)

SW (i, j), (i+ 1, j − 1) (i− 1, j − 1), (i+ 1, j + 1)

To obtain «Main Vectorial Gradients» the gradient values found before to perform
a vectorial process are taken into account. The following scheme to fulfil this consider-
ation is proposed:

if ∇γβ < Tβ for each one of the three gradient values, then the angle deviation in γ’s
directions for three vectorial values involved is calculated.

Finding an angle deviation for each image channel, it is easy to calculate the weight
values in the direction related. To compute «Main and Derived Vectorial Gradients»,
the next equation is used [2]:

αγβ =
2

1 + exp


cos−1





2 · (255)2 + xγβx′
γβ√

2 · (255)2 + x2
γβ ·

√
2 · (255)2 + x′

γβ
2

}



, (8.47)

where the angle deviations for each color image channel by each pixel involved in
each sample are taken. Now, taking into account these values and gradients in the
related direction, the membership function is used to find «Main and Derived Vectorial-

Gradient Value».
Membership function to obtain «Main and Derived Vectorial-Gradient Value» is

defined as in [17]:

µBIG =

{
max{x, y}, if ∇γβ < Tβ,
0, otherwise,

(8.48)

where
x = αγ(M ,D1,D2)β, y = 1−

[
∇γ(M ,D1,D2)β/Tβ

]
,

and M = Main value, D1 = Derived 1 value, and D2 = Derived 2 value. Figure
4.14 and Table 8.8 expose the pixels involved by each one of the directions. Finally,
the process to obtain «Fuzzy Vectorial Gradient Values» is defined by a Fuzzy Rule
connecting Gradients with Vectorial values.

Fuzzy Rule 1: Fuzzy Vectorial Gradient value is defined as ∇γβαγβ, as follows:

IF (∇γβM is BIG AND ∇γβD1 is BIG)

OR (∇γβM is BIG AND ∇γβD2 is BIG)

THEN ∇γβαγβ is true.

Here, AND is defined as a fuzzy intersection and is expressed by an algebraic product
A · B [45]; OR is defined as a fuzzy union and is expressed as an algebraic sum
A+B −A ·B [45].

According to this fuzzy rule, one can see that if Main and Derived Vectorial-
Gradients are close enough to each other in absolute difference and in angle deviations,
the pixels have similarity with respect to the central pixel and it means that they
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can be taken into a current processing sample to suppress a noise. The found Fuzzy
Vectorial-Gradient values permit to manipulate with weights given to the pixels in
direction related minimizing computational charge in a weighted mean filter. On the
other hand, this permits to avoid pixels that have not sufficient similarity to central one,
giving them a weight with a minimum value. Final step in spatial filtering of noise is
realized employing a Weighted Mean procedure:

yβout =

∑

γ

ωγxγβ

∑

γ

ωγ

, (8.49)

where ωγ = ∇γβαγβ , and xγβ represents each pixel used inside the pre-processing
window.

Spatial Algorithm discussed before suppresses Gaussian noise efficiently, but can
smooth fine details and edges. To avoid this drawback, a «Temporal Algorithm» is
proposed providing good preservation of the mentioned image characteristics. This
algorithm permits to realize motion detection in past and present frames of video
sequence. Connection between these algorithms is discussed in the next section.

8.5.4.5. Temporal-Spatial Filtering.

Here, only the past and present frames are processed together to avoid dramatic
charge in memory requirement and time processing. The proposed fuzzy logic rules
are used in each a color plane of two frames in an independent manner. Also, a 3× 3
pre-processing window is employed to calculate parameters needed in the algorithm.

The angle deviations and gradient values related to the central pixel in the present
B frame with respect to its neighbours from past frame A are found as

θ1i = A(xAi ,x
B
c ), ∇1

i =
∣∣xAi − xBc

∣∣ ; i = 0, 1, . . . ,N − 1; N = 8, (8.50)

θ2i = A(xAi ,x
B
i ), ∇2

i =
∣∣xAi − xBi

∣∣ ,
θ3i = A(xBi ,x

B
c ), ∇3

i =
∣∣xBi − xBc

∣∣ ,
(8.51)

where xBc is the central pixel in present frame. The angle and gradient values for
the corresponding pixel positions in both frames are calculated. Also, only the same
parameters for the present frame are computed, finally, eliminating operations in the
past frame, as it is illustrated in Figs. 8.16 a, b, c.

Let us define the membership functions to obtain a value that indicates the degree
in which a certain gradient value or vectorial value matches the predicate. If a gradient
or a vectorial value have membership degree one for the fuzzy set SMALL, it means
that it is SMALL for sure in this fuzzy set, and no movement is achieved by the pixel
related in the sample taken.

Selection of this kind of membership functions is done due to nature of the pixels,
where a movement is not a linear response, and a pixel has different meanings in each
scene of the video sequence. Examples of the used membership functions are illustrated
in Fig. 8.17.

Membership functions BIG and SMALL for angles and gradients are defined by the
following expressions [45]:

µSMALL(χ) =

{
1 if χ < µ1,

exp
{
−((χ− µ1)

2/(2σ2))
}

otherwise,
(8.52)

µBIG(χ) =

{
1 if χ > µ2,

exp
{
−((χ− µ2)

2(2σ2))
}

otherwise,
(8.53)



8.5. Multidimensional and/or 3D Video Processing Algorithms 193

Fig. 8.16. Procedures to find angles and gradient values.

Fig. 8.17. Membership functions SMALL and BIG for angle and gradients deviations.

where χ = θ, ∇ with parameters µ1 = ϕ1, ϕ2, µ2 = ϕ3, ϕ4, ϕ1 = 0.2, ϕ2 = 60, ϕ3 = 0.9,
and ϕ4 = 140, using σ2 = 0.1 for ϕ1 and ϕ3, and using σ2 = 1000 for ϕ2 and ϕ4. It
implies that BIG means the movement probability and SMALL means no movement

probability. So, if a value of «0» is at the fuzzy set BIG is under its membership
function, it means no movement for sure and vice-versa, and if a value of «0» is at the
fuzzy set SMALL under its membership function, it means movement for sure.

We have designed the fuzzy rules to detect the presence of movement pixel by pixel.
Firstly, let detect movement with respect to central pixel in the present frame with the
pixels in the past frame; secondly, the movement detection in respect to pixel by pixel
in both positions of the frames is realized, and finally, this procedure is only applied in
the present frame using central pixel and its neighbours. These three movement values
contribute in a parameter that characterizes the movement confidence. Fuzzy rules are
illustrated in Fig. 8.18.

Fuzzy Rule 2: Definition of the Fuzzy Vectorial-Gradient value SBB(x,y,t):

IF θ1(x, y, t) is SMALL AND θ2(x, y, t) is BIG

AND θ3(x, y, t) is BIG AND ∇1(x, y, t) is SMALL

AND ∇2(x, y, t) is BIG AND ∇3(x, y, t) is BIG

7 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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Fig. 8.18. Fuzzy Rules 2, 3, 4, and 5 used to determine movement confidence employing the past
and present frames.

THEN SBB(x, y, t) is true (Fig 8.18 b).

Fuzzy Rule 3: Definition of the fuzzy Vectorial-Gradient value SSS(x,y,t):

IF θ1(x, y, t) is SMALL AND θ2(x, y, t) is SMALL

AND θ3(x, y, t) is SMALL AND ∇1(x, y, t) is SMALL

AND ∇2(x, y, t) is SMALL AND ∇3(x, y, t) is SMALL

THEN SSS(x, y, t) is true (Fig 8.18 c).

Fuzzy Rule 4: Definition of the fuzzy Vectorial-Gradient value BBB(x,y,t):

IF θ1(x, y, t) is BIG AND θ2(x, y, t) is BIG

AND θ3(x, y, t) is BIG AND ∇1(x, y, t) is BIG

AND ∇2(x, y, t) is BIG AND ∇3(x, y, t) is BIG

THEN BBB(x, y, t) is true (Fig 8.18 d).

Fuzzy Rule 5: Definition of the fuzzy Vectorial-Gradient value BBS(x,y,t):

IF θ1(x, y, t) is BIG AND θ2(x, y, t) is BIG

AND θ3(x, y, t) is SMALL AND ∇1(x, y, t) is BIG

AND ∇2(x, y, t) is BIG AND ∇3(x, y, t) is SMALL

THEN BBS(x, y, t) is true (Fig 8.18 e).

To reduce the execution time of the algorithm, the processing effort should be
reduced. The idea is to distinguish the different areas, especially to find some regions
that could be processed by magnitude filter without affecting fine image details. Here,
the SD of the sample that includes the 3× 3× 2 window for each color channel in the
past and present frames is calculated, obtaining the parameter σ′′

β . This procedure is
similar to the procedure used before. After that, we compare it with standard deviation
σ′
β obtained for Spatial Filter in the following way:
IF {(σ′′

red > 0.4 ∗ σ′
red) AND (σ′′

green > 0.4 ∗ σ′
green) AND (σ′′

blue > 0.4∗)}, THEN

Fuzzy Rules 2, 3, 4, and 5 should be employed, OTHERWISE a Mean Filter is performed.
Here, the AND operation is the «Logical AND».
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If a Mean Filter Algorithm is applied,

yβout =
F∑

i=0

xβi/F , F = 17, (8.54)

it means the presence of a uniform region. In equation (8.54), xβi marks each of the
pixels in a 3 × 3 × 2 window pre-processing. Parameter α = 0.125 is used to adapt
standard deviation and control the filtering charge.

So, if drastic changes happen in some samples, they are reflected in their fuzzy
vectorial-gradient values.

The following expressions are used to update the SD for next frames and distinguish
the fine details on the background of uniform regions for each Fuzzy Rule:

σ′
β = (α (σtotal/5)) + (1− α)(σ′

β), (8.55)

where σtotal is defined as σtotal = (σ′′
red + σ′′

green + σ′′
blue)/3.

If the number of pixels with SBB(x, y, t) value is the biggest one among others
calculated, the algorithm can be expressed as the procedure

IF {(SBB(x, y, t) > SSS(x, y, t)) AND (SBB(x, y, t) > BBB(x, y, t)) AND
(SBB(x, y, t) > BBS(x, y, t))}, THEN Weighted Mean Algorithm is performed using
the found SBB(x, y, t) values as weights:

yβout =

#pixels∑

i=1

pAβi · SBBi
/

#pixels∑

i=1

SBBi. (8.56)

For this case, the SD adaptation of the sample for the SBB(x, y, t) fuzzy value is
equal to 0.875. The fuzzy SBB(x, y, t) value shows that a central pixel is possibly in
movement because of big differences in corresponding values.

If the number of pixels with SSS(x, y, t) value is the biggest, the algorithm can be
expressed as the procedure

IF {(SSS(x, y, t) > SBB(x, y, t)) AND (SSS(x, y, t) > BBB(x, y, t)) AND
(SSS(x, y, t) > BBS(x, y, t))}, THEN Weighted Mean Algorithm is performed using
the SSS(x, y, t) values as weights:

yβout =

#pixels∑

i=1

0.5(pAβi + pBβi) · SSSi
/

#pixels∑

i=1

SSSi, (8.57)

and α for the SSS(x, y, t) fuzzy value is equal to 0.125. The value SSS(x, y, t) shows
that a central pixel is not in movement because of small differences in all directions.
This permits to use in equation (4.57) all the pixels in both frames.

If the number of pixels with BBS(x, y, t) value is the biggest, the following algorithm
is applied:

IF {(BBS(x, y, t) > SBB(x, y, t)) AND (BBS(x, y, t) > SSS(x, y, t)) AND
(BBS(x, y, t) > BBB(x, y, t))}, THEN Weighted Mean Algorithm is performed using
the BBS(x, y, t) values as weights:

yβout =

pixels∑

i=1

pBβi · (1− BBSi

/
pixels∑

i=1

(1−BBSi), (8.58)

where α for the BBS(x, y, t) fuzzy value is equal to 0.875. The (1−BBS(x, y, t))
value is taken because the interest is in obtaining a significant value in how SMALL
membership degree has the pixel in present frame, omitting membership degree value

7*
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due to past frame pixel. The BBS(x, y, t) value exposes that the central pixel is nearly
related with its neighbours in the present frame only, but not in the past frame. The
probable reason can be due to big movement or residual noise presence in the past
frame.

In equations given above, pA(x, y, t) and pB(x, y, t) represent each pixel in the past
and present frames that satisfy the IF condition, and yβout is the output in spatial and
temporal filtering.

The number of pixels with BBB(x, y, t) value is the biggest when the majority of
pixels are not related in any way with other neighbourhood pixels. So, it has been
decided to realize the following procedure:

IF {(BBB(x, y, t) > SBB(x, y, t)) AND (BBB(x, y, t)>SSS(x, y, t)) AND
(BBB(x, y, t) > BBS(x, y, t))}, THEN there exist motion or noise for sure.

To investigate this condition, we consider the nine Fuzzy Vectorial-Gradient values
obtained from BBB(x, y, t). The central value is selected and at least three more
fuzzy neighbours values to detect movement present in the sample. We use the Fuzzy
Rule «R» to obtain «motion_noise» confidence. The activation degree of «R» is just
the conjunction of the four subfacts, which are combined by a chosen triangular norm
defined as A AND B = A ∗B [45]. Computations are specifically the intersection of all
possible combinations of BBB(x, y, t) and three different neighboring BIG membership
degrees BBB(x + i, y + j, t), (i, j = −1, 0, 1). This gives 56 values obtained using
triangular norm. The values are added using algebraic sum of all instances to obtain the
motion_noise confidence. Algebraic sum is given by A+B −A ∗B.

If (motion_noise) = 1, then α = 0.875, else if (motion_noise) = 0, then α = 0.125,
otherwise α = 0.5.

Using these values we obtain output pixel as follows:

yβout = (1− α)pBβc + αpAβc, (8.59)

where pAβi and p
B
βi determine each pixel in the past and present frame of a sequence. The

BBB(x, y, t) value shows that a central pixel and its neighbours do not have relation
among them, and it is highly probably that this pixel is either in motion or is a noisy
pixel.

If there is no majority in pixels calculated by any Fuzzy Rule, it can be concluded
that sample values in the past and present frames have similar nature. So, using only
the central pixels from the present and past frames, we can obtain an output pixel

yβout = 0.5pBβc + 0.5pAβc, (8.60)

where α = 0.5 is used to update standard deviation.
At the final step, the algorithm employs the Spatial Filter for smoothing the non-

stationary noise left after the preceding temporal filter. This can be done by a local
spatial algorithm, which adapts to image structures and noise levels in the corresponding
spatial neighbourhood. This algorithm needs the only modification in its threshold value
Tβ = 0.25σ′

β because of the adaptive way used for the SD.
8.5.4.6. Criteria in Filtering of the Images

We evaluate the proposed processing employing motion detection, using different
objective and subjective criteria. The definition of these criteria: PSNR, MSE, MAE,
and NCD has been done in the Chapter 5 (see equations. (5.5)–(5.8)). Here, additionally
we use the Mean Chromaticity Error (MCRE) that is a measure characterizing the color
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chromaticity by the error of chromaticity between two color images [2, 22]:

MCRE =
M−1∑

i=0

N−1∑

j=0

C
[
f(i, j), f̂(i, j)

]/
MN , (8.61)

where f(i, j), and f̂(i, j) are original and filtered image vectors estimated in (i, j) pixel

position, C
[
f(i, j), f̂(i, j)

]
is the chromaticity error between two vectors, which is

defined as the PP̂ distance among two points P and P̂ that are the intersection points
of f(i, j) and f̂(i, j) with the Maxwell triangle, respectively [2].

We also use a subjective visual criterion presenting the filtered images and/or
their error images for implemented better filters to compare the capabilities of noise
suppression and detail preservation for the algorithms. So, subjective visual comparison
of the images provides information about the spatial distortion and artifacts introduced
by different filters, as well as the noise suppression quality of the algorithm and present
performance of the filter, when filtering images are observed by a human visual system.

8.5.4.7. Simulation Results.

Two different video sequences were used to qualify effectiveness of the proposed
approach and compare it with known techniques. Both «Miss America» and «Flowers»
sequences present different texture characteristics to provide a better understanding in
the robustness of the proposed algorithm. Video sequences were contaminated with
different Gaussian noise of levels from 0.0 to 0.05 in its variance. Frames in a QCIF
format (176 × 144 pixels) are treated in RGB color space with 24 bits (true color), 8
bits for each channel, and 100 frames for each video sequence. The filtered frames were
evaluated according to the PSNR, MAE, NCD, NMSE, and MCRE criteria to support
performance of the proposed framework.

The proposed Fuzzy Directional Adaptive Recursive Temporal Filtering for Gaussian
noise named as FDARTF_G was compared with another similar one, the FMRSTF

(Fuzzy Motion Recursive Spatial-Temporal Filtering) [40], which only employs the
gradients. Another reference procedure chosen is the FVMRSTF (Fuzzy Vectorial Motion
Recursive Spatial-Temporal Filtering), which presents some modification of FMRSTF,
combining the gradients and angles in processing. Other two filters chosen as reference
in simulation to evaluate the quality of the proposed approach were «Generalized Vector
Directional Processing» [41–44] adapted to process three frames at a time and the
«Median M-type K-Nearest Neighbour» (MM-KNN) filter to remove impulsive noise
from corrupted images. The latter was designed by us (see sec. 8.5.1) to remove
impulsive noise from grey and color images in 2D and 3D [9–11, 22] and proved its good
efficiency in comparison with other filtering procedures in suppression of additive noise
in grey images [9, 22]. Here, it was adapted to process three color frames corrupted
with additive noise at a time.

One can see in Table 8.9 that the proposed algorithm VGVDF_G in filtering the
«Flowers» sequence can effectively suppress Gaussian noise of low intensity and is
the best in the PSNR measure until the variance is less than 0.03. According to
the MAE criterion that characterizes the preservation of fine details, the proposed
approach exposes the best results for low intensity noise, 0.005 in variance, but presents
acceptable results for other levels of corruption. According to this criterion, another
proposed algorithm (VMMKNN1_2_G) is the best in preservation of fine image details.
Analyzing objective criteria, the NMSE and MCRE, we observe that the proposed
VGVDF_G presents a better performance until the variance is less than 0.03. The
NCD criterion, which presents the chromaticity properties, shows that the proposed
approach exposes the best results for low intensity noise, 0.005 in variance, and
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presents acceptable results for other levels of corruption, where the best performance is
demonstrated by the VMMKNN1_2_G.

Analyzing «Miss America» sequence (portrait type sequence) in comparison with
«Flowers» sequence presenting «noisy» type sequence with large areas occupied by
small fine details objects, one can see that the best results in all subjective criteria are
demonstrated by the proposed VGVDF_G filter.

Fig. 8.19. PSNR and NCD criteria applied to process first 100 frames of Flowers and Miss
America color sequences corrupted by Gaussian Noise of variance 0.005.

Other simulation results presented in Fig. 8.19 have numerically justified the
robustness of the proposed algorithm exposing the filtering results over the first 100
frames of two sequences. It is easy to see that Flowers sequence corrupted by
low-intensity Gaussian noise being processed by novel technique has presented the best
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Tab l e 8.9. Numerical results for different objective criteria characterizing the proposed
algorithm and reference filters.

Criteria

Flowers Frame 20, Gaussian noise with variance = 0.005

FLRSTF_
NORMAL

FLRSTF_
ANGLE

FDARTF_G
VMMKNN

1_2_G
VGVDF_G

PSNR 26.19 26.01 27.31 25.35 25.46

MAE 9.63 9.83 8.50 8.78 8.96

MCRE 0.019 0.018 0.014 0.024 0.021

NCD 0.016 0.017 0.015 0.015 0.017

variance = 0.01

PSNR 24.36 24.34 25.72 24.63 24.72

MAE 11.93 11.97 10.44 9.92 10.15

MCRE 0.023 0.023 0.017 0.026 0.024

NCD 0.021 0.021 0.019 0.017 0.019

variance = 0.02

PSNR 22.60 22.57 23.75 23.42 23.627

MAE 14.645 14.694 13.182 11.861 11.912

MCRE 0.0284 0.0285 0.0228 0.0322 0.0276

NCD 0.0251 0.0252 0.0234 0.0198 0.022

variance = 0.03

PSNR 21.468 21.465 22.702 22.523 22.794

MAE 16.684 16.698 14.853 13.351 13.316

MCRE 0.0326 0.0324 0.0258 0.0362 0.0308

NCD 0.0285 0.0287 0.026 0.0217 0.0241

Miss America Frame 20, Gaussian noise with variance = 0.005

PSNR 29.93 29.91 32.51 29.80 30.66

MAE 5.82 5.83 4.46 6.18 5.55

MCER 0.035 0.035 0.023 0.031 0.025

NCD 0.02 0.02 0.016 0.021 0.02

variance = 0.01

PSNR 27.67 27.68 30.06 27.61 28.66

MAE 7.477 7.5 6.069 8.143 7.213

MCRE 0.045 0.045 0.032 0.043 0.032

NCD 0.026 0.026 0.021 0.028 0.026

variance = 0.02

PSNR 25.492 25.507 27.251 24.950 25.874

MAE 9.634 9.645 8.376 11.278 10.19

MCRE 0.057 0.057 0.044 0.064 0.045

NCD 0.033 0.033 0.03 0.039 0.037

variance = 0.03

PSNR 24.183 24.174 26.024 23.238 24.236

MAE 11.145 11.167 9.603 13.929 12.404

MCRE 0.064 0.064 0.048 0.083 0.054

NCD 0.0384 0.03843 0.035 0.049 0.045
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Fig. 8.20. PSNR and NCD criteria applied to process first 100 frames of Flowers and Miss
America color sequences corrupted by Gaussian Noise of variance 0.01.

PSNR values in the majority of the frames. In the NCD criterion, the best results in
the majority of the frames are exposed by VMMKNN1_2_G. (Fig. 8.19) has confirmed
that, for Miss America sequence, the best results in all criteria are presented by the
proposed filtering technique.

Similarly to Fig. 8.19, other simulation results are presented in Fig. 8.20, where the
sequences were corrupted by a Gaussian noise of variance 0.01. Fig. 8.20 shows that
the Flowers sequence processed by the designed procedure has a good performance in
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Fig. 8.21. Sequence Flowers, frame 50; a) Original image, b) Corrupted by Gaussian noise with
0.01 variance. c) Zoomed section. d) FLRSTF_NORMAL e) FLRSTF_ANGLE, f) FDARTF_G,

g) VMMKNN1_2_G, h) VGVDF_G.

the PSNR criterion; on the contrary, the NCD and MAE criteria demonstrate a better
performance obtained by another designed VMMKNN1_2_G filter. In the case of Miss
America sequence filtering, the best results are demonstrated by the proposed algorithm,
as it is clearly shown in the same figure.

Visual results exposing filtered images are shown at Fig. 8.21, where the images
are corrupted by Gaussian noise with 0.01 in variance. It is easy to see the better
preservation of image details when the proposed technique is applied. For example,
one can clearly see good noise suppression observing the tree in Flowers sequence, and
better fine details preservation in other parts of the image.

Figure 8.22 presents filtered visual results for Miss America sequence in the case of
Gaussian noise corruption. Here, we can a see a better preservation of the image details
when the proposed algorithm is applied. Also, one can see a better noise suppression,

Fig. 8.22. Miss America, frame 50; a) Original image, b) Corrupted by Gaussian noise with
0.01 variance, c) Zoomed section, d) FLRSTF_NORMAL, e) FLRSTF_ANGLE, f) FDARTF_G,

g) VMMKNN1_2_G, h) VGVDF_G.
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observing uniform regions of the frame, and a better fine details preservation, analyzing
the eye in this image.

So, the developed novel robust algorithm applies the fuzzy and directional techniques
to suppress Gaussian noise in color video sequences and special motion detection scheme
to characterize motion presented in two frames (past and present), as well as to
determine filtering effort, adapting it according to noise presence and movement. The
pixels in present and past frames or only pixels in present frame based on a decision in
calculated values are used. The simulation results have demonstrated that, using gradient
and vector values jointly, according to proposed algorithm, it is possible to improve
its performance in comparison with the case when only one of these characteristics is
used. This consideration has been proved in simulation results obtained by VGVDF_G,
FLRSTF_NORMAL, and FLRSTF_ANGULO. The PSNR, MAE and NCD objective
criteria clearly quantify the performance and robustness of the proposed framework in
such characteristics as noise suppression, fine details preservation, chromaticity error,
and perceptual error. The detailed analysis of filtering results over the hundred frames
of the sequences has demonstrated the robustness of the proposed approach [46, 47, 48].
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Chapter 9

PROCESSING OF MULTIDIMENSIONAL SIGNALS USING

DSP AND FPGA PLATFORMS

9.1. Platforms for Real Time Processing: DSP vs FPGA

Real-time imaging systems form a special class that has important applications in
robotics, industrial inspection, high-definition television, advanced simulators, computer-
aided systems, etc. The main characteristic of a real-time imaging system is its capability
to realize processing in a finite time, but this definition is very broad [1]. Depending
on the problem, this time can be very short, say, 30 ms or, as in medical diagnostic
applications, longer, up to several seconds.

Usually, to satisfy conditions of real time imaging, different hardware platforms are
used, especially the FPGA and DSP devices.

The hardware FPLDs (Field Programmable Logic Devices) that are fabricated by
Xilink [2] and Altera [3] consists of arrays or matrixes of basic logic elements with a
possibility to interconnect them via programming for implementation. Common for this
type of FPLD is the FPGA (Field Programmable Gate Arrays). It has the following
principal characteristics.

Operation velocity attains to 200 MHz.
Density. These devices have programming circuits useful for programming ports.

They can integrate up to 3 millions elements.
Development tools. The programming language is VHDL (Very High Speed Inte-

grated Circuit Hardware Description Language) according to the IEEE standard. The
compiler used by Altera is Max+PLUS II or codes in VHDL. There is a compiler for
the C language named Handle C.

Programmable digital processors (DSPs), usually fabricated by Texas Instruments,
Motorola, and Analog Devices, are realized as semiconductor devices capable of analog-
to-digital convertion.

The main characteristics of this hardware are following.
Clock Velocity attains 1GHz in some types of devices produced by Texas Instruments,

which permits more than 5000 million instructions per second (MIPS) and dozen of
billion floating-point operations per second (GFLOPS).

Parallel architecture permits one to realize different clock instructions.
Development tools. There are compilers of C language for Windows and interface

from Matlab to different DSP and also LabVIEW hardware and software;
Platform. The Started Kit is connected via parallel port to PC and EVM (Evaluation

Module).
FPGA vs DSP.
Different aspects should be taken into account when a method of image/video

processing is to be chosen. This depends on advantages and drawbacks of each platform.
One should also take into account what platform is used for the given real-time
application and what kind of platform is best suited for it.

Implementation that is based on FPGA should be careful when such operations as
division are to be realized [4, 5]. The principal problem in DSPs is memory management
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due to possible difficulties of the DMA (Direct Memory Access) and/or internal memory
cache.

Below, we apply the DSP and FPGA to different problems, explaining every time the
selection of the hardware.

9.2. Compression-Windowing Procedures Applicable in Radar
Systems

Remote sensing systems, such as SAR usually apply FM linear signals to resolve
closely placed targets and improve the signal-to-noise ratio (SNR) [6–8]. The principal
parameter in radar applications is the range resolution, which is determined by the output
signal bandwidth. In the case of FM signals, the output of a matched filter presents a
compressed pulse accompanied by responses in other ranges, called lateral lobes in time
or range. Weighting functions (windows) are usually applied in processing of output
signals to reduce these lateral lobes. This can lead to a degradation of SNR, but, at
the same time, the use of windows allows one to reduce side-lobes. Another drawback
is that the width of the main lobe can increase, and, therefore the precise resolution
is degraded. The selection of a window is determined by a compromise between the
changes in the level of noise and in the attenuation of the side lobes. Several criteria
should be taken into account when these window functions are applied, such as width
of the main lobe, reduction of the side lobes amplitudes, rate of decrease of side lobes,
etc. [9–11].

For implementation of signal processing procedures, such as pulse compression and
windowing in the radar, one can choose different hardware: DSP and FPGA (Field
Programmable Gate Array). Here, we use FPGA architecture, which has advantages
in performance but also offers much of the flexibility of programmable DSP processors.
The higher performance of the FPGA makes the applications developed with them closer
to specific solutions and makes them appropriate in special purpose integrated circuits
(ASICs) or commercial off-the-shelf (COTS) platforms [12].

9.2.1. Linear FM Signal. The linear FM signal usually used in SAR can be
written as [6, 13, 14]

S(t) =

{
S0(t) cos(ω0t+ µt2/2), |t| 6 T/2,

0, other t,
(9.1)

where ω0 is the central frequency, µ is the compression coefficient, and S0(t) is the
signal amplitude. The use of such signal can significantly improve the resolution quality
and detection capability of the radar. For the time |t| 6 τ/2, we can write the following
equation for a linear FM signal:

S(t) = S0(t) cos(2πf0t+
π∆f

τ
t2) = S0(t)ℜ

(
eiπ(2f0t+

∆f
τ t2)

)

with the complex amplitude S0(t) = S0(t) exp(iπ
∆f

τu
t2). It is known that resolution

properties of a radar are defined by the ambiguity function which has the form [6, 13]

|χ(τ ,Ω)| =
1

2E

∣∣∣∣∣∣

∞∫
−∞

S0(t) exp(iπ
∆f

τ
t2)×

×S0(t− τ ) exp(−iπ∆f

τ
(t− τ )2) exp(i2πΩt)dt

∣∣∣ . (9.2)
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The resolution analysis can be realized by using the areas for each of the axes τ and ν
as

Λτ (ν) =

∞∫
−∞

|χ (τi, ν)|2 dτi and Λν (τ ) =

∞∫
−∞

|χ (τ , νi)|2 dνi

which, in the case of matched filter, can be written as

Λτ (ν) =
1

T 2
ef

∞∫
−∞

|S(f)|2|S (f − ν)|2 df ,

Λν (τ ) =
1

T 2ý� ∞∫
−∞

|S(t)|2|S (t− τ )|2 dt,

where Tef is the effective signal duration. The areas of resolution in time and frequency
are defined as it follows:

Λτ (0) =
1

T 2
ef

∞∫
−∞

|S(f)|4 df =
1

T 2
ef

∞∫
−∞

G2(f)df ,

Λν(0) =
1

T 2
ef

∞∫
−∞

|S(t)|4 dt =
1

T 2
ef

∞∫
−∞

A4
0(t)dt,

where G(f) =
∫
χ (τ , 0) exp (−i2πfτ) dτ is the power spectrum of the modulation and

A0(t) is the signal amplitude. The precision of the estimations of the range R and radial
velocity Vr as the maximum point for the ambiguity function in the axes τ and Ω can
be characterized by the dispersion of the parameters τ and f [13]:

σ2
τ =

1

(E/N0)(2πfquad)
2

and σ2
f =

1

(E/N0)(2πtquad)
2
,

where

fquad =




∫
f 2|S(f)|2 df
∫
|S(f)|2 df




1/2

is the quadratic mean band of the signal,

tquad =




∫
t2|S(t)|2 df

∫
|S(t)|2 df




1/2

is quadratic mean square signal duration, and E/N0 is the SNR in the system input.
Thus, the use of linear FM permits one to attain high resolution both in range and

velocity, since the frequency deviation and signal duration are independent parameters,
and their product, which characterizes the estimation precision, also can be a large
value.

Pulse compression is a standard signal processing technique used to minimize the
peak transmission power, to maximize SNR, and to get better resolution. It is known
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that the impulse response h(t) of such filter is the complex conjugate of the time-reversed
chirp:

h(t) = ks∗ (−t+ τp) . (9.3)

Here, s(t) is the transmitted signal and r(t) is the received signal. So the output of the
matched filter can be written as

g(t) =
1

T

T/2∫

−T/2

r (τ ) s∗ (τ − t) dτ , (9.4)

or, in the case of discrete time, as:

g(n) =
1

N

N−1∑

k=0

r(n)S∗(n− k).

Figure 9.1 presents some explanation of the radar compression procedure in the case
of linear frequency modulation.

Figure 9.2 presents the model used for the pulse compression. We used four FIR
filters with real and imaginary parts at the input. The signal reference is also presented
by the real and imaginary part. The real part of pulse compression is calculated by the
summation of FIR 1 and FIR 2, and the imaginary part is calculated using FIR 3 and
FIR 4 outputs. Finally, the absolute value (ABS) is formed using complex signal to
realize the pulse compression procedure.

Fig. 9.1. Chirp signal and matched filter.
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Fig. 9.2. Model of pulse compression.

9.2.2. Windowing. In applications of remote sensing, it is required to reconstruct
the target parameters, which can be darkened by side lobes of a very large (or powerful)
target [6, 7]. So, the principal difficulty is to distinguish between a small target and
side lobes of a large or powerful target. Note that the first side lobe of the uniform
phantom has an attenuation of 13 dB below the main lobe.

The usage of the weighting functions (windows) in the time domain essentially
influences the effect of spectral loss. Weighting function in time domain can be
implemented by multiplying the FIR filter coefficients and radar signal correcting it.
The absence of this function for a finite analyzed signal part is equivalent to the use of a
rectangular window. The use of the windows different from rectangular and smoothing
discontinuities of the signal at the ends of the segment allows one to reduce the side-lobe
level, but, at the same time, the main lobe can extend and resolution can be degraded.
The choice of the window is determined by a compromise between the noise and side-lobe
levels. If we want to obtain a high resolution between near signal components, and
distant components are absent, windows with a very narrow main lobe and minimal
amplitude of neighboring side-lobes are required [9, 11].

Below, we present a novel method for design of windows based on combination of
atomic functions (AF) with classical windows, such as Gauss, Bernstein, and Dolph–
Chebyshev functions. Characteristics of the new weighting functions, as well as those
of classical Hamming, Blackman–Harris, and Kaiser–Bessel windows are presented too.
Some of them possess extraordinary properties making these functions useful in digital
signal processing, including that connected with SAR.

9.2.3. Simulation Experiments. In our experiments we used a radar with the
following parameters: the signal in the form of a linear FM (Chirp), the frequency
deviation (∆f) of 9.375 MHz, the pulse width (T) of 3.2 µs, and number of the taps in
the matched filter equal to 800, the sampling frequency of 249.68 MHz, and the antenna
gain of 40 dB [15, 16]. We also used weighting function in time domain, and simply
multiplied the coefficients the FIR filter window and the signal.

The performance of different windows has been widely studied. Special attention was
given to improvement their side-lobe behavior.

We are going to evaluate all functions presented in Table 9.1 and compare each
of these windows with the best classical one, the Hamming window. The parameters
used for this evaluation are the window gain, side lobe level, main lobe width, and
the coefficient of noise performance. All these parameters have been defined above in
Chapters 2 and 3 of this book [11, 17, 18] as follows:
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window gain, Êgain = 0.5
0.5∫
−0.5

W (t)dt, where W (t) represents the window;

side lobe level, 10 log
(
max
k

|Scom(t = 0)/Scom(t)|2
)
;

main lobe width at 6dB level is defined from the following equation with respect for t:

10 log
(
|Scom(t = 0)/Scom(t)|2

)
= 6 dB,

where Scom(t) is the compressed signal after window processing;
and coefficient of noise performance, SNRwindow/SNRrectangular.

The analysis of this table reveals that, of all the windows, the best window
performance for radar pulse compression is demonstrated by the Hamming window,
which has the gain of 0.54, the side-lobe level of -32 dB, and the main lobe width of
239.2 ηsec. One can see that the main lobe width is nearly double the 129 ηsec main
lobe width of the rectangular window. However, comparing all the windows with the
Hamming one, we come to the following conclusion. The function fup 4 offers smaller
attenuation in the main lobe amplitude, as well as a lower main lobe width in comparison
with the Hamming window. Since the attenuation of the side lobes is one of the most
important parameters, the use function up (x) is preferable due to its better performance.
From analysis of Table 9.1, one may conclude that the best results can be obtained with
the novel windows such as the fup 4(x) ·D3(x).

Tab l e 9.1. Values of parameters for different windows in radar pulse compression.

Windows Gain
Side lobe
level (dB)

Main lobe
width at

−6 dB (ηsec)

Coefficient of
performance
in noise
presence

Rectangular 1 −13.7 129.5 1

Hamming 0.5398 −32 239.2 0.7527

Blackman 0.4199 −31.3 350 0.6096

Blackman–Harris 0.3588 −30.1 477.1 0.5395

Kaiser–Bessel β = 3.5 0.6403 −26.7 220.2 0.7534

fup 3(x) 0.3871 −30.7 368.7 0.4823

fup 4(x) 0.5797 −25.7 208 0.4542

up (x) 0.5 −31.4 249.1 0.6359

fup 2
4(x) ·B2(x) 0.4002 −30.9 256.8 0.5858

fup 4(x) ·D3(x) 0.4246 −31.3 240.3 0.6230

fup 4(x) ·D3.5(x) 0.3988 −30.9 255.5 0.5907

fup 2
6(x) ·G2

2(x) 0.3769 −30.5 266.3 0.5720

fup 6(x) ·G3(x) 0.386 −30.7 259.9 0.5833

fup 2
6(x) ·G3(x) 0.3611 −30.2 255.9 0.5522
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Fig. 9.3. a) Recangular window; b) Hamming window; c) fup 6 window; d) fup 9 window.

Figure 9.3 a, b, c, d show the results of processing for several windows, demonstrat-
ing their visual performance. Here, the radar data volume was reduced to 4500 samples
for representing the radar scattering from the targets.

9.2.4. Hardware Implementation. In addition to consideration of the model, we
proposed its implementation on a hardware level, realizing the window processing in
real time [19].

We employed a Field Programmable Gate Array (FPGA), which has a low price and
is good for fabricating different systems. In order to test the windowing, the Kit FPGA
Xilinx model VIRTEX II XC2V3000 was used to realize the radar pulse operation. This
Kit has 2 DAC’s and 4 ADC’s, each one of 10 bits. Figures 9.4 and 9.5 present the model
and result of pulse creation. We used in this case the frequency sampling of 40 MHz.

Implementation of the matched filter in the FPGA makes it possible to eliminate
special chips previously needed. We have tested the performance of such a model in the
FPGA Xilinx model VIRTEX II XC2V3000. The use of the hardware Xtreme DSP along
with the software, namely, Matlab 6.5, Simulink, System Generator, and FUSE made
it possible to implement the pulse compression procedure in the FPGA in real time.
From analysis of different models, we established the final structure of FPGA shown
in Figure 9.5. One of the advantages of the abovementioned software and hardware is
the ease of changing parameters of each a block in the system. If a better precision
is required, the number of bits can be increased in each block.

The maximum number of taps was 65, and the same FPGA model shown in Fig-
ure 9.5 was used for implementation of classical and novel windows based on atomic
functions. The delay of the system was 2.7 µseg, and, if it is necessary to increase the
number of taps, the delay will increase too. The system can run at 162 MHz.

Figure 9.6 illustrates the pulse compression in the radar on the abovementioned
hardware for some classical and novel windows.
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Fig. 9.4. Model for radar transmitting pulse.

Fig. 9.5. Hardware model.
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Fig. 9.6. Hardware results of windowing.

Experimental results presented in Fig.9.6 demonstrate the pulse compression for

the rectangular, Hamming, Kaiser–Bessel, and the novel windows based on the atomic
functions. One can see that the novel windows offer a better decrease of the sidelobes
with a distance from the main lobe. Figure 9.7 demonstrates the experimental hardware

results of windowing in pulse compression radar using real data to resolve several
targets for the rectangular, Hamming, Kaiser–Bessel, and some novel windows: up (x),
fup 4(x) ·D3(x), and fup 6(x) ·G3(x).

We can see that windows based on the AF exhibit an essentially more rapid decrease
of the side lobes as compared to the classical ones. Thus, obviously, the resolution
of nearly placed targets 2 and 3 is better for windows generated by functions up (x),
fup 4(x) ·D3(x), and fup 6(x) · G3(x) than for the rectangular, Hamming, and Kaiser-
Bessel windows.
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Fig. 9.7. Hardware results of windowing in pulse compression radar resolving several targets.

T ab l e 9.2. Numerical hardware results for window processing.

Window Sidelobe level, (dB)
Main-lobe width at

−6 dB (ηs)

Rectangular −14.1 124

Blackman, 4 term −31.8 274

Chebyshev −31.7 272

Hamming −33.3 196

Hanning −31.8 214

Kaiser–Bessel −31.1 172

fup 2(x) −29.2 259

up (x) −29.8 258

fup 2
4(x) ·B2(x) −31.8 256

fup 4(x) ·D3(x) −32.2 237

fup 4(x) ·D3.5(x) −31.6 248

fup 2
6(x) ·G2

2(x) −31.9 263

fup 6(x) ·G3(x) −31.3 297

fup 2
6(x) ·G3(x) −32.7 302
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The maximum side-lobe amplitudes and the main-lobe width of −6 dB was obtained
in the experiments presented in Table 9.2. As can be seen from Tables 9.1 and 9.2, most
of values of the side-lobe amplitudes and the main-lobe width coincide.

The pulse compression results in the presence of noise (input SNR= 20 dB) are
shown in Figure 9.8. As can be seen there, the best results are attained by the AF up (x)
since this function provides small sidelobes and a good resolution. Another window
demonstrating good characteristics in the presence of noise is fup 4(x) ·D3(x), but the
gain in this case equals 0.36, which is smaller than for the up (x) function.

Fig. 9.8. Main lobe in real-time pulse compression for different windows (SNR= 20 dB).

So, novel windowing functions have demonstrated a better quality of pulse compres-
sion in the FM radar applications. The windows fup 4(x) ·D3(x), fup 4(x) ·D3.5(x), and
fup 6(x) ·G3(x) gave better results in comparison with the classical ones.

The good performances of these functions makes possible the application of the novel
windows in processing of FM radar data. Also, the FPGA implementation of the model
using the novel windows has demonstrated an effective elimination of the sidelobes.

9.3. Runtime Analysis of 2D-3D Filtering Algorithms

9.3.1. 3D Ultrasound Filtering. The runtime analysis of the 3-D RM-KNN
and other filters were implemented on the basis the Texas Instruments DSP
TMS320C6711 [4, 5]. This DSP has a performance as high as 1 GFLOPS at a clock
rate of 176 MHz [5]. The filtering algorithms were implemented in C language using
the BORLAND C 3.1 for all routines, data structure processing, and low-level I/O
operations. Then, the programs were compiled and executed by the DSP TMS320C6711
applying the Code Composer Studio 2.0. Then, the programs were compiled in the
C6711 C compiler in order to create the assembler file (.asm file), the object file (.obj
file), and the executable COFF file (.out file). The.out file was simulated in the DSP
using a stand-alone simulator. Finally, the.out file was loaded and executed in the
C6711 target using COFF loader utility.

The experiment was realized using an ultrasound sequence of 525× 382× 12 image
voxels. The sequence was degraded with 5, 10, 15, 20, 25, and 30% impulsive noise.
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Table 9.3 shows the processing time in seconds for the proposed filters and other filters
used for comparison. The processing time includes the time for acquisition, processing,
and storing data. One can see from this table that the processing time for the selection
median and average filters have sufficiently small time values. These filters use the
technique that permits dividing the cube into two groups for fast calculation of the mean
and the median, but for the LUM Smooth, LUM Sharp, and LUM filters, the time is
increased at the stage of ordering of 27 voxels. The processing time for the RM-KNN
filters is large in comparison with the other filters. It is easy to see that processing time
is greater but the PSNR and MAE performance criteria are sufficiently better for the
RM-KNN filters in comparison with other known filters, as it has been demonstrated in
Chapter 7.

Other experiments were also made, in which the ultrasound sequence was processed
using different cube configurations. Table 9.4 presents the processing time in seconds for
different cube configurations in the MM-KNN filter with the Hampel and Cut influence
functions. From the analysis of this table, a conclusion can made that the use of the
cube voxel configurations from a to f makes possible a significant reduction of the
processing time without a significant loss in the quality of filtering.

Tab l e 9.3. Processing time in seconds for 3-D filtering in the case of impulsive noise.

3-D Filters
Impulsive noise percentage

5% 10% 15% 20% 25% 30%

Modified Trimmed Mean 2.1716 2.1716 2.1716 2.1716 2.1716 2.1716

Ranked Order 1.6836 1.6836 1.6836 1.6836 1.6836 1.6836

MSM1 0.5846 0.5846 0.5846 0.5846 0.5846 0.5846

MSM2 0.5773 0.5773 0.5773 0.5773 0.5773 0.5773

MSM5 1.2198 1.2198 1.2198 1.2198 1.2198 1.2198

MSM6 1.1667 1.1667 1.1667 1.1667 1.1667 1.1667

MaxMed 1.1981 1.1981 1.1981 1.1981 1.1981 1.1981

SelMed 2.3240 2.3240 2.3240 2.3240 2.3240 2.3240

LUM Smooth 4.122 4.705 5.355 5.754 6.047 7.123

LUM 4.317 4.915 5.582 5.984 6.285 7.402

MM-KNN CUT 20.49 20.59 20.61 20.63 20.66 20.87

MM-KNN HAMPEL 2051 20.53 21.02 21.26 21.26 21.75

MM-KNN BERNOULLI 21.94 22.01 22.25 22.49 22.73 22.98

9.3.2. Runtime Analysis in Color Imaging. The runtime analysis of various filters
(see Sec. 8.5.1) in color image processing was realized on DSP TMS320C6711 Texas
Instruments. The processing time in seconds of the different filters is presented in
Table 9.5 and includes the time of acquisition, processing, and storing of data.

From the analysis of this table, it is easy to see that the processing times of the
proposed VRMKNNF with different influence functions lies in the range from 0.2 to
0.5 s. The time for the proposed VMMMKNNNF and VWMKNNNF is less than for
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Tab l e 9.4. Processing time for the MM-KNN filters for different cube configurations.

Cube configurations
MMKNN Hampel MMKNN Cut

Impulsive Noise Percent

10 20 30 10 20 30

a 1.763 1.787 1.812 1,594 1.643 1.659

b 2.053 2.077 2.101 1.866 1.908 1.916

c 4.618 4.635 4.692 4.807 4.823 4.872

d 4.696 5.201 5.264 4.754 5.199 5.252

e 4.66 4.628 4.690 4.804 4.816 4.869

f 4.616 4.642 4.693 4.800 4.830 4.871

g 9.939 10.04 10.06 10.06 10.06 10.06

h 9.969 10.02 10.04 10.05 10.07 10.08

i 21.02 21.26 21.75 20.61 20.66 20.87

Tab l e 9.5. Processing time for different filters on the «Mandrill», «Lena», and «Peppers» color
images degraded by 10, 20, and 30% impulsive noise.

Algorithm
Processing Time

Mandrill Lena Peppers

VMF 0.039 0.039 0.039

GVDF 0.533 0.564 0.565

GVDF_DW 0.720 0.721 0.723

AMN-VMF 0.648 0.648 0.648

AVMF 0.137 0.137 0.137

VMF_FAS 0.22 0.22 0.22

AMN-VMMKNNF Simple 3.666 3.687 3.726

VMMKNNF Simple 0.311 0.296 0.316

VMMKNNF Hampel 0.181 0.199 0.196

VWMKNNF Hampel 0.413 0.398 0.409

VABSTMKNNF Hampel 0.322 0.264 0.355

classical reference filters, except the VMF, α-TMF, and AMNF filters, and slightly
more than for the AVMF and VMF_FAS filters. So, the proposed the VRMKNNF filter
can process up to 5 images of 320× 320 pixels per second, depending on the influence
function used. The processing time for the AMN-VMMKNNF filter is greater than for
any another filter, but, as shown above, this filter has a better performance for high
noise corruption.

Table 9.6 presents the processing time required for processing of «Miss America»,
«Flowers», and «Foreman» video sequences of 150, 120, and 400 frames by different
filters. The VMMKNNF (Hampel) filter is capable of processing any of these sequences
with a speed from 10 to 14 frames per second.

It is obvious that, being applied to images with the number of pixels four or five
times less than 320× 320, the VMMKNNF and VWMKNNF filters can preserve edges
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and small-size details and remove impulsive noise sufficiently well compared to other
filters with standard film velocity for computer vision applications.

Tab l e 9.6. Processing time for different filters applied to video color frame sequences.

Algorithm

Processing Time

Flowers Foreman Miss America

Min Max Min Max Min Max

VMF 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153

AGVDF 0.2263 0.2426 0.2143 0.2424 0.2106 0.2424

AMNF 0.0371 0.0371 0.0371 0.0371 0.0371 0.0371

AMN-VMF 0.2506 0.2506 0.2506 0.2506 0.2506 0.2506

AVMF 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533

VMF_FAS 0.0944 0.0944 0.0944 0.0944 0.0944 0.0944

AMN-VMMKNNF Simple 1.4426 1.4503 1.3919 1.4510 1.3417 1.4454

VMMKNNF Hampel 0.0595 0.0702 0.0811 0.0865 0.0917 0.0983

VWMKNNF Hampel 0.2661 0.3110 0.2686 0.2896 0.2912 0.3040

VABSTMKNNF Simple 0.0924 0.1005 0.0908 0.0986 0.0929 0.0998

VABSTMKNNF Hampel 0.1200 0.1236 0.1182 0.1228 0.1194 0.1266

9.3.3. 3D Vector Filters in Multichannel Processing. Here, we discuss some
results of runtime analysis for 3D color imaging.

The Imaging Developer’s Kit (IDK) has been made as a platform for development and
demonstration of image/video processing applications on TMS320C6000 platform. The
IDK is based on the TMS320C6711 floating point DSK board, useful for development
of algorithms in imaging and video processing. The use of Daughter-Card, which
supports several bits by pixels, for video capture, display, and data conversion and drivers
developed by Texas Instruments provides imaging of 16 bits/pixel in 565 RGB format.

The IDK hardware consists of a C6711 DSK with 16MB SDRAM and a daughter-
card with the following capabilities: Video Capture of NTSC/PAL signals (composite
video); Display of RGB signals, 640× 480 or 800× 600 resolution, 16-bits per pixel (565
format); Video data formatting by an on-board FPGA to convert captured interleaved
4:2:2 data to separate Y, Cr, Cb components that may be sent to the DSP for processing;
Video capture and display drivers software written using DSP/BIOS and CSL. This
board has capabilities required for being used in speed processors to work with 3D
algorithms.

Only two algorithms are presented here in order to demonstrate the effectiveness
of this kind of board. These algorithms are «Median Filter» and «Vector Median

Filter» used for processing 1, 2 and 3 frames. Thus we prove the general idea that
3D algorithms are more powerful that 2D algorithms but require more memory and
processor speed. One should distinguish two processing times: the first, taken only by
the algorithm (Time spent by the algorithm) and the second, the «complete time» (to
capture, store, process, and show) as the time spent in a complete processing system.

As we can notice, the processing time for one frame is satisfactory, so that the
median filter is capable of processing 24 frames/s although the vector median filter can
process only 7 frames/sec. But processing of «two frames» requires more than double
processing time. In 3D algorithms, the processor is not sufficiently fast, and a more
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Tab l e 9.7. Processing time required by the Vectorial filters in the Imaging Developer’s Kit.

ALGORITHM
One Frame Two Frames Three Frames

Time
spent
by the
algo-
rithm,
ms

Complete
Time, ms

Time
spent
by the
algo-
rithm,
ms

Complete
Time, ms

Time
spent
by the
algo-
rithm,
ms

Complete
Time, ms

MF 25.4 40.8 91.41 108.15 290.97 308.67

VMF 122.6 137.5 336.86 352.9 641.55 659.73

GVDF 4.5 103

AMNF 3.2 103

AMN-KNN 7.5 103

AVMF 78.0

FDARTF_G
(Sec. 8.5.4)

6.0 103

powerfulness processor is required. There is hardware capable of realizing the processing
that will be used in future developments.

9.4. Compression-Recognition Techniques Using Wavelet Transform

9.4.1. Compression Algorithms Based on Wavelet Transform. Different fields,
such as astronomy, medical imaging, and computer vision manage the data of large
volume. So, this data should be compressed to optimize the storage devices. There
is a lot of approaches to 2D–3D signal compression. Here, we present wavelet-based
techniques for compression procedures focusing on different threshold rules. The basic
idea behind these techniques is to use Wavelets to transform data set into a different
basis, where the unimportant information can be eliminated. Also, we have tested both
classical and novel wavelet algorithms based on the atomic functions, which demonstrate
excellent compression results. Below, decimated wavelet transforms (WT) and the MAE
fidelity criterion are used to evaluate the different compression methods for US and MG
images [20–22].

9.4.1.1. Properties of Wavelet Transform.

The wavelet (WL) transform introduces an intriguing twist to the basic concept
defined by the Fourier transform. In WL analysis, a variety of different probing functions
may be used, but the family always consists of enlarged or compressed versions of the
basic function, as well as translations (see also Chapter 4). This concept leads to the
defining equation for the continuous wavelet transform (CWT) presented in equation
(7.69).

The Discrete Wavelet Transform (DWT) achieves this parsimony by restricting the
variation in translation and scale, usually to powers of 2. When the scale is changed in
powers of 2, the discrete wavelet transform is sometimes termed as the Dyadic Wavelet
Transform.

The Discrete Wavelet Transform (DWT) is easy to realize using filter banks. DWT
can be implemented applying some equations, but it is usually made using filter bank
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techniques. The most popular scheme of the DWT for 2-D signal uses only two filters
for rows and columns, as in the symmetric filter bank (SFB).

In SFB demonstrated in Fig. 7.10, Lx and Hx denote the low-pass and high-pass
filters to rows of an image of M × N pixels, Ly and Hy denote the low-pass and
high-pass filters to columns of an image of M/2×N pixels. This filter produces four
subband images of M/2×N pixels LL1 (Low-Low), LH1 (Low-High), HL1 (High-Low)
and HH1 (High-High). Applying this procedure once again to sub-image LL1, it is
possible to obtain four sub-images of M/4×N/4 pixels LL2, LH2, HL2 and HH2.

The DWT is a bilateral transform; all of the information in the original waveform
should be contained in the subband signals. These subband signals, or some aspect of
the subband signals, such as their energy over a given time period, could provide a
succinct description of some important aspect of the original signal.

However, other decomposition structures are valid, including the complete or bal-
anced tree structure. In this decomposition scheme, both high-pass and low-pass
subbands are further decomposed into high-pass and low-pass subbands up till the
terminal signals. This structure is known as wavelet packets (WP).

9.4.1.2. Compression by Wavelet Threshold.

The three main steps of compression using the wavelet coefficient and threshold
technique are as follows [23]:

1. Calculate the wavelet coefficient matrix applying a WT to the original image.

2. Modify (threshold or shrink) the detail coefficients to obtain the reduced number

of coefficients.

3. Encode the modified coefficients to obtain the compressed image.

Thresholding Functions. These functions determine how the thresholds are applied to
the data. The most popular are four thresholds, a single threshold (±t) is required for
the hard [δHt (w)], soft [δSt (w)], and garrote [δGt (w)] functions, but for semisoft function
[δSSt1,t2(w)] two thresholds (±t1 and ±t2) are required (Fig. 9.9).

Hard function does not modify the original data of the wavelet coefficients, so, for
this reason we use only hard function in the experiments. The hard function is given by
the following equation:

S =

{
x if |x| > t

0 if |x| 6 t
, (9.5)

where x is the original signal, S is the threshold signal and t is threshold.
Thresholding Rules. The thresholding rules determine how the thresholds should be

calculated. Certain rules calculate the threshold independently of the image type, while
others obtain different thresholds for different values of every image. We indicate the
assumptions of each method as they are described here [20, 23, 24].

Average Threshold. This is the simplest method to calculate threshold. It consists
of obtaining the average of the minimum and maximum data values, and it is given by
the following equation:

t =
(
Vmax − Vmin

2

)
. (9.6)

Universal Threshold. The universal rule was proposed by Donoho [23]. It uses the
statistics of the wavelet coefficients, and it is based on the standard deviation of the
image. Universal threshold is given by

t = σ

√
2 log 2(N)

N
, (9.7)

where N is number of pixels of the image and σ is the standard deviation.
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Fig. 9.9. Different thresholding functions.

Top Threshold. The top rule is a global method that is independent of the
thresholding function. Given p as the fraction of the largest coefficients to keep, the
threshold t is the (1-p)’th quantile of the empirical distribution of the absolute values of
the wavelet coefficients. It is applied according to the hard function.

Bayes Shrink Threshold. The Bayes shrink rule uses a Bayesian mathematical
framework for images to derive subband-dependent thresholds that are nearly optimal.
The formula for the threshold for a given subband is

ts =
σ̂2

σ̂2
X

, (9.8)

where σ̂2 is the estimated noise variance, and σ̂2
X is the estimated signal variance on the

subband (X) considered. The noise variance is estimated as the scaled median absolute
deviation of the diagonal detail coefficients on level 1 in the subband HH1.

9.4.1.3. Proposed Compression Scheme.

The proposed compression scheme is shown in Fig. 9.10. The original image is
decomposed using WL or WP, applying threshold to obtained decomposition coefficients,
applying quantization and calculating the encoding reduced coefficients, finally, the
compressed image should be formed.
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For an objective evaluation of fidelity of the compressed images, we employ several
criteria that usually are used to evaluate the difference between two images [25–28], the
compression rate (CR) was also used to evaluate the compression level of the system.

Fig. 9.10. Proposed compression scheme.

Mean Absolute Error (MAE). This criterion is often used as a numeric measure
of distortion for fine details and contours of the image and characterizes the average
difference between the original and compressed images:

MAE =
1

M ·N

M∑

m=1

N∑

n=1

|y[m,n] − ŷ[m,n]|, (9.9)

where M ,N are sizes of the image, y[m,n] is original image, and ŷ[m,n] is compressed
image.

Compression Rate (CR). This criterion characterizes the compression quality an is
given as follows:

CR =
Original image size

Compressed image size
. (9.10)

We have carried out analysis of different wavelets used especially for Ultrasound (US)
and Mammography (MG) images compression, also including new wavelets families
based on atomic functions. This way we have been able to determine what type
of wavelet filters works better for a specialized compression scheme for this type of
images. Here, we determine and compare their key properties: Frequency response,
approximation order, projection cosine, and Riesz bounds — these key properties were
obtained for the classic wavelets W9/7, Daubechies8, and Symlet8, as well as for
the complex Kravchenko–Rvachev wavelets ψ(t) (see Chapter 4) based on the Atomic
Functions up (t), fup 2(t), and eup(t), introduced in Chapters 1 and 2 [29].

Let us investigate wavelet-based techniques for compression and focusing on different
wavelets based in Atomic Functions. The basic idea behind these techniques is to use
wavelets to transform data set into a different basis, where unimportant information can
be eliminated.

Using the key properties of the different wavelets, we can justify the obtained
experimental results for compression of US and MG images [20].

Wavelet Transform and Filter Banks: The Discrete Wavelet Transform (DWT)
is easy to realize using filter banks as it has been mentioned before, DWT can be
implemented applying some equations, but it is usually made using filter bank techniques.

The most popular scheme of the DWT for 2-D signal uses only two filters for rows
and columns, as in the symmetric filter bank.

Wavelets Used in Compression: In tests carried out previously, it was found that
better results are obtained when compressing the Ultrasound images with the Symlet
wavelet and with the Daubechies wavelet for mammography images [22–24].

Therefore, we realize an evaluation to compare the acting of 3 wavelet families based
on atomic functions with the classical wavelets that presented better acting.
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We use the complex Kravchenko–Rvachev wavelets [29] ψ(t) based on the atomic
functions up (t) fup 2(t) and eup(t).

Wavelet Key properties: The wavelet decomposition algorithm employs two analysis
filters H̃(z) (low-pass) and G̃(z) (high-pass). The reconstruction algorithm applies the
complementary synthesis filters H(z) (low-pass) and G(z) (high-pass). These four filters
constitute a perfect reconstruction filter bank. In the present case, the system is entirely
specified by the low-pass filters H(z) and H̃(z), which form a biorthogonal pair. The
high-pass operators are obtained by simple shift and modulation presented in following
equation:

G̃(z) = zH(−z) and G(z) = z−1H̃(−z). (9.11)

The wavelet transform has a continuous-time domain interpretation that involves the
scaling functions ϕ̃(x) and ϕ(x), which are solutions of two-scale relations with filters

H̃(z) and H(z), respectively.
The scaling function ϕ(x) associated with the filter H(z) is the L2- solution (if it

exists) of the two-scale relation given by following equation:

ϕ(x) =
2

H(1)

∑

k∈Z

hkϕ(2x− k). (9.12)

While it is usually difficult to obtain an explicit characterization of ϕ(x) in the time
domain, one can express its Fourier transform as a convergent infinite product:

ϕ̂(ω) =
∞∏

k=1

H(ej
ω
2k )

H(1)
. (9.13)

A simple way to generate a scaling function is to run the synthesis part of the wavelet
transform algorithm starting with an impulse. This is often referred as the cascade
algorithm [24].

Much of the early works in wavelet theory have been devoted to carrying out
the mathematical properties (convergence, regularity, order, etc.) of these scaling
functions. Usually, the wavelets themselves do not pose a problem because they are
linear combination of the scaling functions:

ψ(x) =
2

H(1)

∑

k

gkϕ(2x− k),

ψ̃(x) =
2

H̃(1)

∑

k

g̃kϕ̃(2x− k).
(9.14)

The corresponding analysis and synthesis wavelet basis functions are ψ̃i,k =
= 2−i/2ψ̃(x/2i − k) and ψi,k = 2−i/2ψ(x/2i − k), respectively, where i and k are the
translation and scale indices.

A necessary condition for the convergence of (4) to an L2-stable function ϕ(x) is that
the filter H(z) has a zero at z = −1. More generally, the refinement filters will have a
specified number of «regularity factors», which determine their order of approximation.

For all the wavelet families used in the compression scheme, the following properties
were obtained to justify the experimental results.

Frequency response: This property allows us to appreciate the behavior of the
analysis and synthesis filters in a graphic way to appreciate the differences among the
different wavelet families used.

Approximation Order: The parameter L is the number of factors (1+z−1) that divide
the transfer function H(z). The approximation order plays a crucial role in wavelet
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theory [30]. They imply that the scaling function ϕ(x) reproduces all polynomials
of degree less or equal to n = L − 1; in particular, it satisfies the partition of unity

(
∑

k ϕ(x− k) = 1) (see Chapter 4). They are also directly responsible for the vanishing

moments of the analysis wavelet:
∫
xnψ̃(x)dx = 0 for n = 0, 1, 2. . .,L − 1. Finally, the

order L also corresponds to the rate of decay of the projection error as a scale that it
goes to zero and indicates the number of coefficients in the filters [31].

The next point concerns the stability of the wavelet representation and its underlying
multi-resolution bases. The crucial mathematical property is that it translates the scaling
functions and wavelets from Riesz bases [32]. Thus, one needs to characterize their
Riesz bounds and other related quantities.

The cross-correlation function is a 2π periodic function aϕ1,ϕ2(ω) given by

aϕ1,ϕ2(ω) =
∑

k∈Z

ϕ̂2(ω + 2kπ) ∗ ϕ̂1(ω + 2kπ), (9.15)

aϕ1,ϕ2(ω) =
∑

k∈Z

e−kjωϕ12(k), (9.16)

and associated with the pair {ϕ1,ϕ2}. The corresponding cross-correlation function is
given by the following equation: ϕ12(x) =

∫
ϕ2(ξ)ϕ1(ξ + x)dξ.

Thus, one can define a biorthogonal pair {ϕ, ϕ̃} as a set of scaling functions for
which the cross-correlation filter is identity (aϕ,ϕ̃(ω) = 1). Here, we mostly consider the
autocorrelation filter, such as aϕ,ϕ(ω) also denoted by aϕ(ω).

Riesz Bounds: The tightest upper and lower bounds, B <∞ and A > 0, of the auto-
correlation filter of ϕ(x) are the Riesz bounds of ϕ(x) and given by A2 = inf

ω∈[0,2π]
aϕ(ω)

and B2 = sup
ω∈[0,2π]

aϕ(ω). Equivalently, they satisfy to equations

A = inf
c∈ℓ2

∥∥∥
∑

k∈Z
ckϕ(x− k)

∥∥∥
L2

‖c‖ℓ2
, B = sup

c∈ℓ2

∥∥∥
∑

k∈Z
ckϕ(x− k)

∥∥∥
L2

‖c‖ℓ2
. (9.17)

The existence of the Riesz bounds ensures that the underlying basis functions are in
L2 and that they are linearly independent (in the ℓ2 space). The Riesz basis property
expresses the equivalence between the L2-norm of the expanded functions and the ℓ2-
norm of their coefficients in the wavelet or scaling function basis. There is a perfect
norm equivalence (Parseval’s relation) if and only if A = B = 1, so, in this case the
basis is orthonormal.

Projection Cosine: The (generalized) projection angle θ between the synthesis and
analysis subspaces Va and Ṽa is defined as [33]

cos θ = inf
f∈Ṽa

‖Paf‖L2

‖f‖L2

=
1

sup
ω∈[0,2π]

√
aϕ(ω) · aϕ̃(ω)

. (9.18)

This fundamental quantity is scale-independent, and it allows us to compare the perfor-
mance of the biorthogonal projection P̃a with that of the optimal least squares solution
Pa for a given approximation space Va. Specifically, we have the following sharp error
bound [34]:

∀f ∈ L2, ‖f − Paf‖L2 6

∥∥∥f − P̃af
∥∥∥
L2

6
1

cos θ
‖f − Paf‖L2 . (9.19)

The projection angle θ between the synthesis and analysis subspaces should be 90
degrees in orthogonal spaces. In other words, the biorthogonal projector will be
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essentially as good as the optimal one (orthogonal projector onto the same space)
provides that cos θ is close to one.

Simulation results: We carried out numerous simulated experiments to compare the
performance of the compression algorithm using different wavelet functions (classical
and based the AFs). Firstly, let us present the experimental results applying the symlet
family compared with three different families of wavelets based on the AFs that gives
the best performance for ultrasound images compression. Secondly, we present the
experimental results applying Daubechies family compared with three different families
of wavelets based on the AFs that gives the best performance for mammography images
compression.

In the compression procedure, we use five decomposition levels.
Figures 9.11 and 9.12 present visual results of compressed US and MG images,

respectively. The original and error image, which were amplified by 40 times, expose
the compression procedure quality.

Fig. 9.11. Compressed US image and error image amplified by 40 times.

Fig. 9.12. Compressed MG image and error image amplified by 40 times.

Figures 9.13 and 9.14 present the results obtained for MAE criteria with symlets,
based on AF up (t), on WA fup 2(t), and on WA eup(t) wavelets, respectively for
ultrasound images.

Figures 9.15 and 9.16 present the results obtained for CR criteria, with symlets, WA
up (t), WA fup 2(t), and WA eup(t) wavelets, respectively for ultrasound images.

Figures 9.17 and 9.18 present the results obtained for MAE criteria, with
Daubechies, WA up (t), WA fup 2(t), and WA eup(t) wavelets, respectively for mam-
mography images.

8 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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Fig. 9.13. MAE criterion for compressed ultrasound images with symlets and WA up (t) wavelets,
respectively (left to right).

Fig. 9.14. MAE criterion for compressed ultrasound images with WA fup 2(t) and eup(t) wavelets,
respectively (left to right).

Fig. 9.15. CR criterion for compressed ultrasound images with symlets and WA up (t) wavelets,
respectively (left to right).

Fig. 9.16. CR criterion for compressed ultrasound images with WA fup 2(t) and eup(t) wavelets,
respectively (left to right).

Figures 9.19 and 9.20 present the results obtained for CR criteria, with Daubechies,
based on the AF up (t), based on the AF fup 2(t), and based on the AF eup(t) wavelets,
respectively for mammography images.

Figure 9.21 presents the frequency response for wavelet 9/7 (solid line), Daubechies
8 (dotted line), and symlet 8 (dashed line).

Figure 9.22 presents the frequency response for Kravchenko–Rvachev wavelets based
on the atomic functions up (t) (solid line), fup 2(t) (dotted line), and eup(t) (dashed line).
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Fig. 9.17. MAE criterion for compressed mammography images with symlets and WA up (t)
wavelets, respectively (left to right).

Fig. 9.18. MAE criterion for compressed mammography images with based on AF fup 2(t) and
eup(t) wavelets, respectively (left to right).

Fig. 9.19. CR criterion for compressed mammography images with Daubechies and WA up (t)
wavelets, respectively (left to right).

Fig. 9.20. CR criterion for compressed mammography images with WA fup 2(t) and eup(t)
wavelets, respectively (left to right).

Finally, Table 9.8 presents the key properties of the different wavelets used in
compression of the US and MG images.

It is known from statistical theory that the approximation property of estimation of
random variable is characterized by relative error δ = 2(1 − r), where r is correlation
coefficient that is equal to projection cosine in this case. So, calculations of this error
show that wavelet based on eup(x) can potentially produce relative variance error of
0.00464 (6.8% in RMS value), and at same time wavelet Daubechies 8 gives value of

8*



228 Ch. 9. Processing of Multidimensional Signals

Fig. 9.21. Frequency response: wavelet 9/7 (solid line), Daubechies 8 (dotted line), and symlet 8
(dashed line).

Fig. 9.22. Frequency response: based on the atomic functions up (t) (solid line), fup 2(t) (dotted
line), and eup(t) (dashed line).

0.02242 (more than 15% in RMS value), and wavelet 9/7 value of 0.03234 (more than
18% in RMS value). So, wavelet based on eup(x) gives about three less relative error
in RMS values than wavelet 9/7 that is the basic wavelet used in JPEG2000 standard.

Numerous tests were carried out in comparing of different wavelets functions
(classical and WA) to choose the best one for compression of medical US and MG
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Tab l e 9.8. Summary of key properties of different wavelet families [44].

Key properties for different Wavelet filters

Type Wavelet 9/7 Daubechies 8 Symlet 8

Dec. Rec. Dec. Rec. Dec. Rec.

Approximation Order 4 4 4

Projection cosine 0.98387 0.98879 0.98781

Riesz Bounds
0.926 0.943 0.833 0.849 0.880 0.896

1.065 1.084 1.267 1.290 1.273 1.295

Type A.F.W. up (t) A.F.W. fup 2(t) A.F.W. eup(t)

Dec. Rec. Dec. Rec. Dec. Rec.

Approximation Order 4 4 4

Projection cosine 0.99176 0.99472 0.99769

Riesz Bounds
0.792 0.806 0.713 0.726 0.641 0.653

1.514 1.542 1.802 1.834 2.145 2.183

images. The compression algorithm based on average threshold has shown better detail
preservation, presenting the best MAE, but the compression rate decreases from 4 to
5 times approximately in comparison with the universal and Bayes shrink thresholds
that can maintain a good quality image (low MAE). The top threshold presents a low
MAE values but also low compression rate values. Finally, it is advisable to use the
universal threshold that exposed the best CR and can maintain the quality of the image
in comparison with other threshold methods.

Also, it is observed that for two modalities of images used in the tests the wavelet
families based on the atomic functions presented smaller levels of mean absolute error,
with relationship to their equivalent of the Daubechies and symlets families.

Frequency response analysis has shown that Daubechies and symlet filters are more
selective than the Wavelet 9/7 filters used in compression standard JPEG2000. It has
been observed that the WA filters have an answer of respond function in more selective
frequency than the filters of the traditional families, and WA system eup(x) presented
the best frequency response among all investigated wavelets.

Since the approximation order has been taken the same for all used filters, this
derives mainly in two things, the applying filters have the same number of coefficients
and, therefore they imply the same computational complexity when being implemented
in the compression algorithm. Also, the convergence of the error should be of the same
order for all the filters.

The existence of the limits Riesz bounds demonstrates that the coefficients of the
analysis and synthesis filters are lineally independent. The found projection cosine shows
that the WA systems are close to the ideal value. This implies that they are better
than semi-orthogonal and the «most independent». Also, the fact that they are lineally
independent ensures that errors does not accumulate in the decomposition/reconstruction
procedure.

These properties appreciate that the families of wavelets based on atomic functions
have sufficiently better acting than the traditional families. Also, it is appreciated that
the WA system eup(x) has a better acting.

Finally, it is advisable to use the WA systems because they present the best image
quality and maintain the compression rate almost equal. Likewise the different properties
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calculated for the wavelet filters demonstrate that the WA filters should have a better
acting that the traditional wavelets. The WA system eup(x) presents better levels of
MAE criterion for two image modalities.

9.4.2. Wavelet Transform and Neural Network in Classification of Mammogra-
phy. Several research groups have focused on the development of computerized systems
that can have different types of medical images and extract useful information for the
medical professional [20–22, 25].

Mammography (MG) is currently the only proven and cost-effective method to
detect early breast cancer. Because of the small sizes of Microcalcifications (MCs)
and the relatively noisy MG background, subtle MCs can be missed by radiologists.
Computerized methods for detection of MCs have been developed in a number of works
[35–40]. MG interpretation can be considered a two-step process. A radiologist first
screens the MGs for abnormalities. If a suspicious abnormality is detected, further
diagnostic workup is then performed to estimate the likelihood that the abnormality is
malignant.

Computer-aided detection (CAD) is considered to be one of the promising approaches
that may improve the efficacy of MG. CAD lesion detection can be used during
screening to reduce oversight of suspicious lesions that warrant further diagnostic
workup. CAD represents one of the most successful paradigms of medical-image analysis
by incorporating most of the significant developments that have occurred in enhancement
and segmentations of candidate features, in feature extraction and classification, and
reduction or characterization of false positives.

Mammography is one of the radiological fields where CAD systems have been widely
applied because the demand for accurate and efficient diagnosis is so high. The presence
of abnormalities of specific appearance could indicate cancerous circumstances, and
their early detection improves the prognosis of the disease. The principal stages of a
typical CAD scheme are: preprocessing, segmentation, feature analysis (extraction,
selection, and validation), and classification utilized either to reduce false positives
(FPs) or to characterize abnormalities. Figure 9.23 shows a typical CAD scheme. In the
stages of this method, spot-like characteristics in the original X-ray image are enhanced
before undergoing border detection and filling to distinguish them from the background.
A description of the methods employed in each stage is given below.

Fig. 9.23. CAD architecture.

9.4.2.1. Processing Procedures.

At the first stage, the subtle features of interest are enhanced and the unwanted
characteristics of the MG image are de-emphasized. The enhancement procedure results
in a better description of the objects of interest (MCs). The enhancement of the
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contrast of the regions of interest, the sharpening of the abnormalities boundaries, and
suppression of noise are considered in this stage.

The MG images are extracted from the MIAS database [21] where images have
the detailed information, which includes the characteristics of background tissue (fatty,
fatty-glandular, or dense-glandular), and a class of abnormality (calcification, masses,
and speculated masses). It has been used in analysis of 30 MG images with presence of
MCs. The procedure that consists of employing of the WT analysis using Daubechies

(db), Symlets (sym), Coiflets (coif), and Biorthogonals (bior) filters has been proposed.
The algorithm that consists of the creation of the negative image starting from the

original MG and applying WT to the negative image is used. We employ WT families:
db2, db4, db8, and db16 filters, sym1, sym2, and sym4 filters, coif1, coif2, and coif4

filters, bior1.1, bior2.2, and bior4.4 filters with one decomposition level for negative
image. In this step, the approximation image coefficients are obtained and they are
denoted as an AC image. Figure 9.24 shows one case of original MG image and their
correspondent negative image, and AC image of Wavelet decomposition.

Fig. 9.24. Original MG image (left), Negative MG image (center), and wavelet decomposition of
negative MG image (right).

Segmentation is a decision process based on the preceding image processing task to
extract suitable features, and this is the second stage of the proposed algorithm. Tra-
ditional approaches to segment images include three classes of techniques: pixel-based,
region-based, and edge-based segmentation techniques [40]. The AC image is segregated
into separate parts, each of which has similar properties. The image background, the
tissue area, and other areas can be separated because they are characterized using
generic features.

After the image enhancement, the background gray level of the MGs is relatively
constant. This facilitates the segmentation of the individual MCs from the background.

Region based methods focus our attention on an important aspect, these techniques
classify a pixel as an object pixel judging solely on its gray value independent of the
context. This means that any isolated points or small areas could be classified as
being objects pixels, despite the fact that an important characteristic of an object is
its connectivity. These characteristics are important to consider them in the MCs
classification.

Segmentation Algorithm. Because the MG images present visual information with
diverse textures in the region of the breast, the analysis has been carried out using
an algorithm that allows identifying textures. Algorithm is based on neighborhood
operations and these tend to blur edge regions, as edge pixels are combined with
structural segment pixels. Image features related to texture can be particularly useful
in segmentation.

MG shows the regions that have approximately the same average intensity values,
but are readily not distinguished visually because of differences in texture. Several
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neighborhood-based operations can be used to distinguish textures: the small segment
Fourier transform, local variance (or standard deviation), the Laplacian operator, the
rank operator (that uses the difference between maximum and minimum pixel values
in the neighborhood), the Hurst operator (maximum difference as a function of pixel
separation), and the Haralick operator (a measure of distance moment). Here, the
nonlinear rank filter to convert the textural patterns into differences in intensity has
been applied. The rank operator is a sliding neighborhood procedure in a 3× 3 window
that uses the difference between the maximum and minimum pixel values with a
neighborhood.

The regions are now clearly visible as intensity differences and can be isolated by
thresholding. Histogram of MG image after nonlinear filtering provides the applied
threshold values. After filtering, the intensity regions are clearly seen.

9.4.2.2. Feature extraction and classification

In this stage, the MCs patterns of the segmented MG image were obtained. In
any segmentation approach, a considerable number of normal objects are recognized as
pathological, which results in reduced efficiency of the diction system.

To improve the performance of the scheme, several image features are calculated in
an effort to describe the specific properties or characteristics of each MC pattern. The
most descriptive of these features are processed by a classification system to make an
initial characterization of the segmented samples. Although the number of calculated
features derived from different feature spaces is quite large, it is difficult to identify the
specific discriminative power of each one. Thus, a primary problem is the selection of
an effective feature set that has high ability to provide a satisfactory description of the
segmented regions.

Many useful image features have been suggested by the image processing and pattern
analysis communities [25, 41]. These features can be divided into three categories,
intensity features, geometric features, and texture features, whose values should
calculated from the pixel matrices of the region of interest (ROI). The MCs patterns
obtained at segmentation stage are ROIs. In Fig. 5.25, it is presented foreground of a
suspected MC.

Fig. 9.25. Foreground of a suspected MC.

Table 9.9 provides a list of typical mathematical features of individual MC and their
clusters.

The histograms of the feature point distribution extracted from true and false mass
regions are studied, and the features that can better separate the true and false mass
regions are selected for further study.

From our experience, it has been suggested that three features: the site area,
two measures of compactness, and difference entropy led to better discrimination and
reliability [42, 43].
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Tab l e 9.9. Summary of mathematical features.

Feature subspace Features

Intensity features
1. Contrast measure of ROI

2. Standard derivation inside ROI
3. Mean gradient of ROI’s boundary

Geometric features 1. Area measure
2. Compactness

Texture features

1. Energy measure
2. Correlation

3. Inverse difference moment
4. Sum average
5. Sum entropy

6. Difference entropy

Fig. 9.26. MC pattern original image (left) and MC segmented image (right).

Figure 9.26 exposes five cases of MC patterns of the original images and correspond-
ing MCs segmented ones.

A classification system is an essential part of a CAD system. The classifiers that
are utilized in the area of the detection of mammographic MCs are those employed in
most of the medical image-analysis procedures.

An artificial neural network (ANN) is a structure that can be adjusted to produce a
mapping of relationships among the data from a given set of features. The main steps
in using ANN are: first, a neural network structure is chosen in a way that should
be considered suitable for the type of the specific data and the underlying process to
be modeled. Then, the ANN is trained using a training algorithm and a sufficiently
representative set of data (training data set). Finally, the trained network is evaluated
with different data (test data set), from the same or related sources, to validate that the
acquired mapping is of acceptable quality.

The ANN structure was chosen according to the results obtained with another type
of images [42] that used ANN of backpropagation with three layers.

A group of patterns of 200 MCs during the segmentation process was obtained. The
ANN was trained using a LMS training algorithm and 100 patterns data. The training
of the ANN was evaluated with other different set of data of 100 MCs patterns.
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9.4.2.3. Simulation Results [42, 43].

The best results applying WT were obtained for db4, db8, db16, sym1, sym2, and
sym4 functions. The proposed algorithm for segmentation of MG images has been
proven employing 30 images, where separation of the region of interest was obtained
with accuracy inside the area breast.

For the classification of MCs, there were considered its segmented patterns. Each
segmented pattern of MC indicates the presence of a malignant tumor in the MG images.
It has been considered two test types: the first one, considering the features of the MC
patterns and the second one, the MC patterns that are used only for classification.

In Table 9.10, the training and test percentages considered from two features to
eleven are presented.

Tab l e 9.10. Performance of the MLP classifiers for number of features (training percentage and
test percentage).

No. Feature % Training % Test

2 75.2 74.0

3 77.0 76.2

4 78.6 76.0

5 82.0 80.0

6 85.4 82.5

7 88.0 85.0

8 92.0 90.0

9 95.2 93.5

10 95.0 94.0

11 100 95.0

Tab l e 9.11. Performance of the MLP classifiers (training percentage, test percentage, and
computational iterations).

Architecture % Training % Test Iterations

400:10:2 95.2 91.2 13000

400:20:2 96.4 92.4 10000

400:30:2 97.3 93.5 8000

400:40:2 98.6 94.0 8200

400:50:2 99.0 95.5 7900

400:60:2 99.5 97.0 7500

400:70:2 99.5 96.8 7100

400:80:2 100 97.2 7100

400:90:2 100 98.0 7000

400:100:2 100 97.5 7000

400:500:2 100 97.8 5700
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The architectures are presented among brackets with three numbers separated by
two points. Here, the first number corresponds to size of the pattern of MC, the second
one is a number of the hidden nodes in the structure ANN, and third one is a number
of identified classes.

Table 9.11, presenting the MLP type classifiers, exposes that the best results were
obtained for [400:60:2] and [400:90:2] architectures. The efficient performance obtained
for an MLP classifier was 100% and 98% for training and testing, respectively.

So, the proposed and implemented method is based on WT, segmentation, and
MLP classifiers for MG medical image. It permits to reduce the iterations number
during the training of the neural network MLP applying WT. The wavelet functions:
Daubechies, Symlet, Coiflet, and biorthogonal have been employed in MLP network
for microcalcifications classification in the MG images. The experimental results have
shown good performance of the implemented algorithms [37, 38].
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Chapter 10

TRANSVERSAL ADAPTIVE FILTERS

The transversal FIR adaptive filters have been successfully used in the solutions of
many practical problems due to their unconditional stability. The mean-square error
surface of such filters is unimodal, which guarantees the convergence to the global
minimum. This chapter presents an analysis of transversal FIR adaptive filter structure
along with some of its most widely used adaptive algorithms.

10.1. Introduction

An adaptive filter, as shown in Fig. 10.1, is a linear system with two inputs and two
outputs whose parameters are updated to minimize some given criterion of the difference
between the filter output y(n) and the reference signal d(n). Although several criteria
have been proposed in literature, the most commonly used one is the mean-square error
because, in this situation, the optimal solution of any FIR adaptive filter converges to
the solution of the Wiener–Hopf equation [1–3].

Fig. 10.1. Adaptive filter framework.

Several algorithms have been proposed to update the adaptive filter coefficient
vector. They can be divided in two groups. The first group, which is based on
the Newton–Rapson approach, provides robustness against additive noise and fast
convergence rates, although its computational complexity is too high for most practical
applications. The second group, based on gradient-search approach presents a low
computational complexity, although its convergence rate is slow and its performance is
sensitive to the additive noise. These two approaches and some variants of them are
analyzed in the next sections.
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10.2. Mean Square Error Surface

A fundamental concept in the development of adaptive filter algorithm is the mean-
square error surface (MSE), which is a function of the filter coefficients.

To obtain an expression for the MSE, consider the output signal of a digital filter,
which is given by

y(n) =
∞∑

k=0

wkx(n− k), (10.1)

where the filter coefficients are estimated so that

ξ = E
[
|e(n)|2

]
(10.2)

becomes a minimum and

e(n) = d(n) −
∞∑

k=0

wkx(n− k). (10.3)

From the orthogonality property of the mean square estimation it follows that [1, 3]

E

[(
d(n) −

∞∑

k=0

wkx(n− k)

)
x(n− j)

]
= 0, (10.4)

E [d(n)x(n− j)] =
∞∑

k=0

wkE [x(n− k)x(n− j)], (10.5)

ϕxd(j) =
∞∑

k=0

wkϕxx(j − k). (10.6)

Then, from (10.6), the MSE is given by

MSE = σ2
d −

∞∑

k=0

wkϕxd(k). (10.7)

Next, taking the z transform of (10.7), we obtain

MSE = rdd +
1

2πj

∮ [
W (z−1)Gxx(z) − 2Gdx(z)

]
W (z)

dz

z
, (10.8)

where W(z) is the FIR (finite impulse response) transfer function, Gxx(z) is the spectral
density function of the input signal, and Gdx(z) is the cross-spectral density power
between the input and reference signals. If W(z) is an arbitrary pole-zero function, two
important situations must be considered: a) The system of poles may move out of the
unit circle during the apdatation process and b) the MSE may present local minima or
flat zones that may hamper the adaptation process [1, 3]. Figure 10.2 shows the MSE
of an arbitrary pole-zero system.
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Fig. 10.2. MSE of a second order pole-zero system.

Since the all-zero systems are more widely used than the pole-zero ones, their MSE
surface is analysed with more detail in the next subsection.

10.2.1. MSE Surface for all-Zero Systems. The MSE surface of an all-pole
system can be obtained by substituting the transfer fuction of an all-pole, or finite
impulse response FIR, system of order N, which is given by

W (z) =
N−1∑

k=0

wkz
−k (10.9)

into (10.8) to obtain

MSE = rdd +
N−1∑

m=0

N−1∑

k=0

wmwk
1

2πj

∮
zmz−kGxx(z)

dz

z
−

− 2

N−1∑

m=0

wk
1

2πj

∮
z−kGdx(z)

dz

z
. (10.10)

Finally, taking the invesrse z transform, we obtain

MSE = rdd(o) +
N−1∑

k=0

N−1∑

m=0

wkwmrxx(k −m) − 2

N−1∑

K=0

wkrdx(k). (10.11)

Equation (10.11) shows that the MSE is a cuadratic function of the filter coefficients,
which means that there exists only a global minumum and, therefore, a simple gradient
algorithm can be used to obtain the optimum filter coefficients [1]. Figure 10.3 shows
the MSE of a FIR system.
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Fig. 10.3. FIR adaptive filter MSE surface.

Fig. 10.4. FIR adaptive filter structure.

10.3. Recursive Least-Square Algorithms

One of the most widely used FIR adaptive filter algorithms is the recursive least-
square algorithm [1, 2], which directly minimizes the mean-square error. Consider the
adaptive filter output, which is given by

y(n) = WTX(n) = XT (n)W, (10.12)

where

X(n) = [x(n),x(n− 1) . . . ,x(n−N + 1)]T , (10.13)

W = [w0,w1,w2, . . . ,wN−1]
T (10.14)
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is the coefficients vector, which will be estimated such that the MSE, E[e2(n)], attains
a minimum, where

e(n) = d(n) − y(n), (10.15)

E[e2(n)] = E[(d(n) − y(n))2]. (10.16)

To minimize (10.16), we can use the orthogonality principle in MSE estimation,
according to which the optimum vector is obtained from the condition that the input
vector is orthogonal to the error signal. Thus, from (10.12), (10.13), and (10.16), it
follows that [1]

E[X(n)(d(n)− X(n)TW)] = 0, (10.17)

where

E[X(n)XT (n)W] = E[d(n)X(n)], (10.18)

E[X(n)XT (n)]W = E[d(n)X(n)]. (10.19)

Assuming that the coefficients and input vector are mutually uncorrelated, we obtain

RW = P, (10.20)

where
P = E[d(n)X(n)] (10.21)

is the correlation vector between the reference signal and the input vector X(n), and

R = E[X(n)XT (n)] (10.22)

is the input signal autocorrelation matrix. The next assumption is that the input and
reference signals are ergodic. Then, P(n) can be estimated as follows

P(n) =
n−1∑

k=0

λn−kd(k)X(k) + d(n)X(n),

P(n) =
n∑

k=0

λn−kd(k)X(k),

(10.23)

P(n) = λ
n−1∑

k=0

λn−k−1d(k)X(k) + d(n)X(n), (10.24)

P(n) = λP(n− 1) + d(n)X(n), (10.25)

where λ is the forgetting factor [1, 9]. In a similar way, we find that

R(n) = λR(n− 1) + X(n)XT (n). (10.26)

Then, multiplying (10.20) on the left by R−1, from (10.25) and (10.26) it follows that

W = [λR(n− 1) + X(n)XT (n)]−1[λP(n− 1) + d(n)X(n)]. (10.27)

Next, using the matrix inversion lemma [1]

[A + BCD]−1 = A−1 − A−1B[DA−1B + C−1]DA−1 (10.28)
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with A = λR(n− 1), B = X(n), C = 1yD = XT (n), we obtain

W =
[
1

λ
R−1(n− 1) −

[
1

λ
R−1(n− 1)X(n)

]
∗

∗
[
1

λ
XT (n)R−1(n− 1)X(n) + 1

]−1 1

λ
XT (n)R−1(n− 1)

]
∗

∗
[
λP(n− 1) + d(n)X(n)

]
, (10.29)

W =
1

λ

[
R−1(n− 1) − R

−1(n− 1)X(n)XT (n)R−1(n− 1)[
λ+ X

T (n)R−1(n− 1)X(n)
]

]
∗

∗
[
λP(n− 1) + d(n)X(n)

]
. (10.30)

Let us define
Q(n) = R−1(n) (10.31)

and

K(n) =
R

−1(n− 1)X(n)

λ+ X
T (n)R−1(n− 1)X(n)

. (10.32)

Then, from (10.30) it follows that

W(n) = Q(n− 1)P(n− 1) +
1

λ
d(n)Q(n− 1)X(n)−

− K(n)XT (n)Q(n− 1)P(n)−
− 1

λ
d(n)K(n)XT (n)Q(n− 1)X(n), (10.33)

W(n) =
1

λ
[Q(n−1)−K(n)XT (n)Q(n−1)][λP(n−1)+d(n)X(n)], (10.34)

W(n) = W(n− 1) +
1

λ
d(n)Q(n− 1)X(n) − Q(n− 1)X(n)XT (n)W(n)

λ+ X
T (n)Q(n− 1)X(n)

−

− 1

λ

d(n)Q(n− 1)X(n)XT (n)Q(n− 1)X(n)

λ+ X
T (n)Q(n− 1)X(n)

, (10.35)

W(n) = W(n− 1)+

+
1

λ

Q(n− 1)X(n)

[λ+ X
T (n)Q(n− 1)X(n)]

[
λd(n) + d(n)XT (n)Q(n− 1)X(n) −

−λXT (n)W(n− 1) − d(n)XT (n)Q(n− 1)X(n)
]

(10.36)

W(n) = W(n− 1) +
1

λ

Q(n− 1)X(n)

[λ+ X
T (n)Q(n− 1)X(n)]

λ[d(n) − XT (n)W(n− 1)]. (10.37)

Finally, we get
W(n) = W(n− 1) + K(n)e(n), (10.38)

where
K(n) =

Q(n− 1)X(n)

λ+ X
T (n)Q(n− 1)X(n)

(10.39)
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An alternative expression can be obtained form (10.34) as follows [1, 5, 9]:

Q(n) =
1

λ
[Q(n− 1) − K(n)XT (n)Q(n− 1)]. (10.40)

After multiplying both sides of (10.40) by X(n) on the left, we make the following
transformations:

Q(n)X(n) =
1

λ

[
Q(n− 1)X(n) − K(n)XT (n)Q(n− 1)X(n)

]
, (10.41)

Q(n)X(n) =
1

λ

[
λ+XT (n)Q(n−1)X(n)

]
K(n)−K(n)XT (n)Q(n−1)X(n)

]
, (10.42)

Q(n)X(n) = K(n)+
1

λ
K(n)XT (n)Q(n−1)X(n)− 1

λ
K(n)XT (n)Q(n−1)X(n), (10.43)

Q(n)X(n) = K(n). (10.44)

Finally, substituting (10.44) in (10.38), we obtain

W(n) = W(n− 1) + Q(n)e(n)X(n), (10.45)

where

Q(n) =
1

λ
[Q(n− 1) − Q(n− 1)X(n)XT (n)Q(n− 1)

λ+ X
T (n)Q(n− 1)X(n)

]. (10.46)

10.3.1. Convergence Performance with Stationary and non-Stationary Input
Signals. To evaluate the convergence performance of RLS algorithm, an identifying
time invariant is required as well as for time varying systems using several forgetting
factors λ [9]. Figure 10.5 shows the convergence performance of a FIR adaptive filter
whose coefficients are updated using the RLS adaptive algorithm with three different
convergence factors, when it is required to identify a time invariant system. The input
signal was a white noise sequence with a signal-to-noise ratio of 20 dB. As expected, in
this situation, the convergence performance improves as the forgetting factor becomes
close to one. On the other hand, Figs 10.6 and 10.7 show the MSE obtained when
the RLS algorithm is required to identify a time varying system whose coefficients are
given by

A[i, k] = A[i, k] cos(2πk/120) k is odd,
A[i, k] = A[i, k] cos(2πk/200) k is even,

where A[i,j] are constant real numbers.
From this figures, it follows that when the unknown system is a time varying one, a

forgetting factor close to one does not provide the best results because it does not allow
one to track the system variations. Therefore, a smaller forgetting factor must be used
as shown in Figs. 10.6 and 10.7.

10.4. Least-Mean-Square Algorithm

The least-mean-square (LMS) is the most widely used adaptive algorithm due,
mainly, to its low computational complexity and robustness. It is based on a gradient
approach given by [3]

W(n) = W(n− 1) − µ∇, (10.47)

where W(n) is the coefficients vector,

∇ = E

[
∂e2(n)

∂w0

,
∂e2(n)

∂w1
, . . . ,

∂e2(n)

∂wn−1

]T
(10.48)
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Fig. 10.5. Convergence performance of an RLS algorithm using three different forgetting factors
(1) 0.9, (2) 0.99 and (3) 0.999, when it is required to identify a time invariant unknown system.

Fig. 10.6. MSE obtained when the RLS algorithm is required to identify a time varying system
when different convergence factors. The input signal is a white noise signal.
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Fig. 10.7. MSE obtained when the RLS algorithm is required to identify a time varying system
with different convergence factors. The input signal is an autoregressive process.

is the gradient of the mean square error surface, and µ is the convergence factor that
controls the stability and convergence. From Fig. 10.1 it follows that

e(n) = d(n) − WTX(n) (10.49)

and therefore

∇ = −2E [e(n)x(n), e(n)x(n− 1), . . . , e(n)x(n−N + 1)]T . (10.50)

However, the gradient estimation is difficult because the MSE surface is unknown
and it must be estimated from the input data. This process requires a considerable
computational effort. To solve this problem Bernard Widrow [3] proposed to replace the
true gradient by an instantaneous one, which is given by

∧
∇ = 2

[
∂e2(n)

∂w0

,
∂e2(n)

∂w1
, . . . ,

∂e2(n)

∂wn−1

]T
. (10.51)

Substituting equations (10.12)–(10.15) into equation (10.51), we have

∧
∇ = −2[e(n)x(n), e(n)x(n− 1), . . . , e(n)x(n−N + 1)]T , (10.52)

∧
∇ = −2e(n)X(n). (10.53)

Finally, substituting equation (10.53) into (10.47), we obtain

W(n) = W(n− 1) + 2µe(n)X(n). (10.54)
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Equation (10.54) is known as the least-mean-square (LMS) algorithm or Widrow–Hopf
adaptive algorithm. This algorithm requires only 2N+1 multiplications and 2N+1 addi-
tions. This computational complexity, which is very low for most practical applications,
does the LMS algorithm suitable for many practical applications.

10.4.1. Proof of Convergence. Consider the output error of FIR adaptive filter,
which is given by

e(n) = d(n) − XT (n)W(n− 1), (10.55)

where X(n) and W are the input and coefficients vectors given by (10.13) and
(10.14). Substituting (10.55) into (10.54), after some straightforward manipulations, we
obtain [3]

W(n) = W(n− 1) + 2µd(n)X(n) − 2µX(n)XT (n)W(n− 1). (10.56)

Taking the expected value of (10.56), after some straightforward manipulation we get

E [W(n)]=E [W(n − 1)] + 2µE [d(n)X(n)] − 2µE[X(n)XT (n)]E [W(n − 1)] , (10.57)

E [W(n)] − R−1P = E [W(n − 1)] − R−1P + 2µR[R−1P − E [W(n − 1)]], (10.58)

where

R =




γxx(0) γxx(1) . . . γxx(L− 1)
γxx(1) γxx(0) . . . γxx(L− 2)

...
...

. . .
...

γxx(L− 1) γxx(L− 2) . . . γxx(0)


 = E[X(n)XT (n)], (10.59)

P = E[d(n)X(n)] = E[X(n)d(n)] (10.60)

are the input signal autocorrelation matrix and cross-correlation vector between the
input and reference signals, respectively. Then, defining

ξ(n) = E [W(n)] − R−1P, (10.61)

from (10.58) it follows that [3]

ξ(n) = (I− 2µR) ξ(n− 1). (10.62)

Next, from the fact that the autocorrelation matrix R can be decomposed using an
orthogonal transformation K. as follows

R = KTQK, (10.63)

where

Q = diag [λ1,λ2, . . .λN−1] (10.64)

and λi is the i-th eigenvalue of R, alter some manipulations, it follows that

ξ(n) =
(
I− 2µKTQK

)
ξ(n− 1), (10.65)

ξ(n) = KT (I− 2µQ)Kξ(n− 1). (10.66)
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Next, multiplying by K both sides and defining

V(n) = Kξ(n) (10.67)

we find that [3, 9]
V(n) = (I− 2µQ)V(n− 1), (10.68)




v0(n)
v1(n)
...

vN−1(n)


=




(1− 2µλ1)
n

(1− 2µλ2)
n

. . .
(1− 2µλN )n







v0(0)
v1(0)
...

vN−1(0)


, (10.69)

Thus, using the LMS algorithm, we find that the expected value of W(n) will converge
to the optimal solution of Wiener–Hopf equation if [3]

|1− 2µλi| < 1, i = 1, 2, . . . ,N − 1. (10.70)

That is the LMS algorithm will converge if and only if

0 < µ <
1

λmáx
. (10.71)

The eigenvalue estimation requires a considerable computational effort, so it is useful to
find a practical boundary for the convergence factor µ. To this end, we can use the fact
that

N−1∑

i=0

x2(n− i) = Nx2(n) > λmáx. (10.72)

Fig. 10.8. Convergence characteristics of a second-order adaptive filter using a gradient-search
based approach.
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Then, the LMS Hill algorithm converges to the optimal solution if [3]

0 < µ <
1

Nx2(n)
, (10.73)

where x2 is the input signal power. Figure 10.8 shows the error surface and the gradient
search trajectory for a second order adaptive filter with the convergence factor µ=0.03.
This figure demonstrates that, if the convergence factor satisfies (10.73), the system
converges to the optimal solution.

10.4.2. Properties of the Instantaneous Gradient. In the previous sections it
was shown that the use of the instantaneous gradient instead of the real one provides
the convergence of the mean value of the coefficients vector to the optimal solution of
the Wiener–Hopf equation. Thus, in order to understand this behavior, it is useful to
analyze the properties of the instantaneous gradient. To this end, let us consider (55),
which can be written as [2, 9]

W(n) = W(n− 1) − µ(2X(n)XT (n)W(n− 1)) − 2d(n)X(n)), (10.74)

W(n) = W(n− 1) − µ∇̂, (10.75)

where
∇̂ = 2X(n)XT (n)W(n− 1) − 2d(n)X(n). (10.76)

Taking the expectation of (10.76), we obtain

E
[
∇̂
]

= 2E[X(n)XT (n)]E [W(n − 1)] − 2E [d(n)X(n)] , (10.77)

E
[
∇̂
]

= 2RE [W(n − 1)] − 2P. (10.78)

Next, using the fact that the mean value of the coefficients vector converges
to the optimal solution of Wiener–Hopf equation, that is E[W(n)] = W∗, and
that ∇ = 2RW∗ − 2P, from (10.78) it follows that [3, 9]

E
[
∇̂
]

= ∇. (10.79)

Next, consider ∇̂ · ∇[8]:

∇̂ · ∇ = ∇̂T∇. (10.80)

Taking the expectation of (10.80), we obtain

∇̂ · ∇ = E
[
∇̂T∇

]
, (10.81)

∇̂ · ∇ = E
[
∇̂T
]
∇. (10.82)

Then, from (10.82), we find

∇̂ · ∇ = ∇ · ∇. (10.83)

Equation (10.83) means that the projection of the instantaneous gradient on ∇ is
equal to ∇. In the statistical sense it means that the instantaneous gradient always
contains a component that is equal to the true gradient. However, the magnitude of the
instantaneous gradient is larger than that of the tree one and its direction presents a
deviation from the true one, as shown in Fig. 10.9. This deviation is denoted by the
angle θ, which, from (10.79), satisfies the condition E [θ] = 0.
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Fig. 10.9. Comparison between the instantaneous and true gradient vectors.

10.5. Normalized LMS Algorithm

A slightly different approach is the called normalized LMS algorithm. To analyze it,
consider the LMS algorithm given by [1]

W(n+ 1) = W(n) + 2µe(n)X(n). (10.84)

Next, define
V(n) = W∗ − W(n), (10.85)

where W∗ and W(n) are the optimum and actual coefficients vector. Then, from (10.85)
the identification error is given by [4]

e(n) = VT (n)X(n). (10.86)

Next, decomposing the error vector in its orthogonal and parallel components, we obtain

V(n) = V0(n) + Vp(n), (10.87)

where Vo(n) and Vp(n) = CX(n) are the component of V(n) orthogonal and parallel
to the input vector X(n). After some straightforward manipulations, we find [3]

e(n) = [V0(n) + Vp(n)]T X(n), (10.88)

e(n) = [Vo(n) + CX(n)]TX(n), (10.89)

e(n) = CXT (n)X(n). (10.90)

Thus, from (10.90) we get

C =
e(n)

X
T (n)X(n)

. (10.91)

Then, from (10.91) the V(n) component parallel to the input vector X(n) is given
by [4]

Vp(n) =
e(n)X(n)

X
T (n)X(n)

. (10.92)

Next, to estimate the optimum coefficients vector, we can subtract from V(n) a compo-
nent proportional the Vp(n) such that the magnitude of V(n) becomes smaller, that is

V(n+ 1) = V(n) − αVp(n). (10.93)
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Thus, from (10.85) and (10.93) it follows that [4]

W∗ − W(n+ 1) = W∗ − W(n) − α
e(n)X(n)

X
T (n)X(n)

, (10.94)

W(n+ 1) = W(n) + α
e(n)X(n)

X
T (n)X(n)

, (10.95)

where, on order to reduce the magnitude of V(n) in each iteration, α must satisfy the
condition [4]

0〈α〈2. (10.96)

Thus, the NLMS algorithm is equivalent to the LMS algorithm if [4, 9]

2µ =
α

X
T (n)X(n)

. (10.97)

10.5.1. Misadjustment and Convergence Rate of NLMS Algorithm. To analyze
the behavior of the NLMS algorithm with different convergence factors, consider the
adaptive filter output error, which is given by [9]

e(n) = XT (n) [H − W(n)] + r(n), (10.98)

where H is the unknown system coefficients vector and r(n) is a noise signal not
correlated with X(n), and W(n) is the adaptive filter coefficients vector given by [4]

W(n+ 1) = W(n) +
α

X
T (n)X(n)

X(n)e(n). (10.99)

Substituting (10.98) into (10.99), we obtain

W(n+ 1) = W(n) +
αX(n)

X
T (n)X(n)

[
XT(n)[H− W(n)] + r(n)

]
, (10.100)

W(n+ 1) − H = W(n) − H +
αX(n)XT (n)

X
T (n)X(n)

[H − W(n)] +
αr(n)X(n)

X
T (n)X(n)

. (10.101)

Next, defining
ε(n) = XT (n) [W(n) − H] , (10.102)

multiplying on the left by XT (n), and assuming that [7]

W(n+ 1) ≈ W(n). (10.103)

from (10.101)–(10.103) we obtain [9]

ε(n) = XT (n)

[
[W(n) − H] +

αX(n)XT (n)

X
T (n)X(n)

[H− W(n)]

]
+
αr(n)XT (n)X(n)

X
T (n)X(n)

, (10.104)

ε(n) =

[
XT(n) − αXT (n)X(n)XT (n)

X
T (n)X(n)

]
[W(n) − H] + αr(n), (10.105)

ε(n) = (1− α)XT (n)[W(n) − H] + αr(n), (10.106)

ε(n) = (1− α)ε(n) + αr(n), (10.107)
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Taking the mean square value of (10.107) and assuming that r(n) is uncorrelated
with ε(n), we obtain [8]

E
[
ε2(n)

]
= (1− α)2E

[
ε2(n)

]
+ α2E

[
r2(n)

]
, (10.108)

(1− 1 + 2α− α2)E
[
ε2(n)

]
= α2E

[
r2(n)

]
, (10.109)

E
[
ε2(n)

]
=

α

2− α
E
[
r2(n)

]
. (10.110)

Finally, from (10.110), we find for MSE [9]:

MSEdB = 10 log 10E
[
r2(n)

]
+ 10 log 10

α

2− α
. (10.111)

Equation (10.111) shows that, for α=1, the MSE converges to the noise level, for α <1,
the MSE converges below the noise level, while, for 1< α < ysg thegystem converges
above the noise level. The convergence performance of NLMS algorithm with several
convergence factors is shown in Fig. 10.10.

Fig. 10.10. Convergence performance of NLMS algorithm with convergence factors (1) α=1.0,
(2) α=0.5, (3) α=0.1, (4) α=0.05, and (5) α=0.01. The input signal is a white noise sequence

with zero mean and unit variance.

10.5.2. Time Constant. It is important to define the time constant of adaptive
filter coefficients vector. Thus, consider the error vector given by [3]



v0(n)
v1(n)
...

vN−1(n)


 =




(1− βλ1)
n

(1− βλ2)
n

. . .
(1− βλN )n







v0(0)
v1(0)
...

vN−1(0)


, (10.112)
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where
β =

α

X
T (n)X(n)

. (10.113)

Next, using the first two terms of the series representation of exponential functions, we
find [3], [14]

e
(−

n
τk

)
= (1− 1

τk
)n. (10.114)

Next, from [3]

(1− 1

τk
)n = (1− βλk)

n (10.115)

we obtain

1

τk
= βλk, (10.116)

τk =
1

βλk
. (10.117)

Finally, substituting (10.113) into (10.117), we find that the time constant for the k-th
mode is given by

τk =
X

T (n)X(n)

αλk
. (10.118)

10.6. Time Varying Step Size LMS Algorithms

Equation (10.118) shows that, when the convergence factor decreases, that is α <1,
the time constant increases, which results in a slower convergence rate, whereas, accord-
ing to (10.111), in this situation the misadjustment decreases. Thus, with a constant
convergence factor α it is not possible to achieve simultaneously small misadjustment
and relatively fast convergence rates. In order to achieve small misadjustment and a
reasonable fast convergence rate simultaneously, several time varying convergence factor
LMS algorithms have been proposed [9–13]. Some of the most successful algorithms of
this kind are described in the next sections.

10.6.1. TVSLMS Algorithm. From (10.111) it follows that, in order to keep a
MSE constant, the factor α/(2-α) must decrease in the same scale that the additive
noise power increases. To achieve this goal, the TVSLMS algorithm, which is suitable
for echo cancellation applications, uses a time varying convergence factor given by [9,
13, 16]

α(n) =
εx2(n)

εx2(n) + e2(n)
, (10.119)

where e(n) is the output error and ε is a constant that satisfies the condition

εx2(n) > e2(n) (10.120)

when the noise power is low, that is equal or less than to 10−4. It can be shown that,

after convergence, the MSE becomes less than or equal to εx2(n). However, when the
degradation is due to changes in the statistics of reference signal, the convergence factor
becomes so small, resulting in a slow convergence rate, that it may limit its use in
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several practical applications. To solve this problem, the convergence factor is modified
in the following form [13, 16]:

α(n) =





1.0 if x2(n) > d2(n),

and d2(n) < ke2(n),

εx2(n)

εx2(n) + e2(n)
otherwise,

(10.121)

where

x2(n) = (1− γ)x2(n− 1) + γx2(n), (10.122)

e2(n) = (1− γ)e2(n− 1) + γe2(n), (10.123)

d2(n) = (1− γ)d2(n− 1) + γd2(n), (10.124)

and 1/γ is approximately equal to the number of data used for power estimation. The
main idea behind this modification is the fact that, in many practical applications,

d2(n) < x2(n) (10.125)

even if the noise power is moderately large. On the other hand, when the adaptation
starts, when a significant change on the statistics of reference signal occurs, or when
the additive noise power increases, the following condition is satisfied

d2(n) < ke2(n). (10.126)

However, both conditions are satisfied simultaneously only when a change on the
statistics of input signal occurs and power additive noise is low. It is the only case
in which a convergence factor equal to one is desirable. Thus, the convergence factor
given by (10.121) satisfies the requirement of providing a small convergence factor when
the noise power is large and a large convergence factor when the noise power is small,
keeping at the same time an adequate performance when the degradation is due to
changes on the statistics of reference signal, as shown in Fig. 10.11.

10.6.2. VSLMS Algorithm. One of the most widely used time varying step size
LMS algorithms is the VSLMS in which the convergence factor is given by [9, 13, 15]

α(n) =





1 α′(n) > 1,

αmin α′(n) < αmin,

α′(n) αmin < α′(n) < 1 . . . 0,

(10.127)

where
α′(n) = γα′(n− 1) + (1− γ)e2(n). (10.128)

This algorithm presents several problems because the step size depends on the
additive noise power and, when it is large and time varying, the performance of VSLMS
algorithm degrades. However, its low computational complexity makes it an attractive
alternative in many practical applications.

10.6.3. VECLMS Algorithm. A slightly different approach, which intend to
reduce the algorithm dependency on the additive noise characteristics, is the VECLMS
algorithm whose time varying step size is given by [13]

α(n) =





1 α′(n) > 1,

αmin α′(n) < αmin,

α′(n) αmin < α′(n) < 1 . . . 0,

(10.129)
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Fig. 10.11. Convergence performance of TVSLMS algorithm and the corresponding convergence
factor when it is required to identify an unknown system of order 260. The input signal is a white

noise with a time varying signal-to-noise ratio.

where
α′(n) = γα′(n− 1) + (1− γ)p2(n), (10.130)

and
p(n) = γp(n− 1) + (1− γ)e(n)e(n− 1). (10.131)

This algorthm presents similar characterstics as the VSLMS, except when the addive
noise is white.

10.6.4. CC_LMS Algorithm. The CC_LMS algorithm intends to solve the prob-
lems still present in the VSLMS and VCLMS, using the cross-correation between the
output error and the filter output sequences, respectively. The main idea behind the
CC_LMS algorithm is the fact that, under the assumption that the additive noise and
the input signals are mutually uncorrelated, we have [13, 17]

e(n)ŷ(n) = r(n)ŷ(n). (10.132)

Then, the step size of CC_LMS algorithm is independent of the additive noise power,
providing in this form a better performance than the VSLMS and VECLMS algorithms.
Thus, using the cross-correlation criterion, the CC_LMS step size is given by

α(n) =





1 if |α′(n)| > 1,

αmin if |α′(n)| < αmin,

|α′(n)| if αmin < |α′(n)| < 1 . . . 0,

(10.133)

where
α′(n) = γα′(n− 1) + (1− γ)e(n)ŷ(n). (10.134)
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10.6.5. ACFLMS Algorihm. Other way to overcome the limitations of the VSLMS
algorithm is to use the ACFLMS algorithm, in which the convergence factor is given
by [13]

α(n) = 1.0− 1.0

1.0 + ε
∣∣α′(n)

∣∣ , (10.135)

where α’(n) is given by (132). Here, when the cross-correlation between the output
error and the filter output approach to one, the convergence factor becomes close to
zero, keeping a low misadjustment. On the other hand, when the cross correlation
approaches to zero, from (133) it follows that the convergence factor becomes close to
one, providing a fast convergence rate.

10.6.6. NACFLMS Algorithm. The NACFLMS is a modification of ACFLMS
algorithm in which the convergence factor is given by [13]

α(n) = 1.0− 1.0

1.0 + εep(n)
, (10.136)

where ep(n) is given by

ep(n) =
e2(n) |X(n)|2max

e2(n)
∣∣∣ max |X(n)|

, (10.137)

e(n) is the output error, and X(n) is the input vector. This algorithm has similar
convergence properties toh those of the ACFLMS algorithm.

Fig. 10.12. Convergence performance of (1) TVSLMS, (2) NLMS [7], (3) VSLMS [10], (4)
NACFLMS[12], and (5) VECLMS [13] when they are used to identify an unknown system of

order 260. The input signal is white noise sequence with a SNR equal to 20 dB.

10.6.7. Simulation Results. Figures 10.12–10.16 show the convergence perfor-
mance of the TVSLMS, NLMS [7], (3) VSLMS [10], (4) NACFLMS [12], and
VECLMS [13] adaptive algorithms when they are used to identify an unknown system
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Fig. 10.13. Convergence performance of (1) TVSLMS, (2) NLMS [7], (3) VSLMS [10], (4)
NACFLMS[12], and (5) VECLMS [13] when they are used to identify an unknown system of

order 260. The input signal is white noise sequence with a SNR equal to 40 dB.

Fig. 10.14. Convergence performance of (1) TVSLMS, (2) NLMS [7], (3) VSLMS [10], (4)
NACFLMS[12], and (5) VECLMS [13] when they are used to identify an unknown system of

order 260. The input signal is an actual speech signal with a SNR equal to 20 dB.

9 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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Fig. 10.15. Convergence performance of (1) TVSLMS, (2) NLMS [7], (3) VSLMS [10], (4)
NACFLMS[12], and (5) VECLMS [13] algorithms when they are used to identify an unknown
system of order 260. The input signal is white noise sequence. Here, firstly the SNR is equal to

40 dB; next, the SNR decays to 0 dB; and, finally, the SNR increases again to 40 dB.

Fig. 10.16. Convergence performance of (1) TVSLMS, (2) NLMS [7], (3) VSLMS [10], (4)
NACFLMS[12], and (5) VECLMS [13] algorithms when they are used to identify a time varying
unknown system of order 260. The input signal is white noise sequence. Here, the SNR decays

twice to 0 dB, increasing after some time interval to 40 dB.
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of order 260 under several different conditions. In Figs. 10.12 and 10.13, the input
signal is a white noise sequence with a signal-to-noise ratio equal to 20dB and 40dB,
respectively.

Figure 10.14 shows the convergence performance of the abovementioned adaptive
algorithms when the input signal is an actual speech signal with a signal-to-noise ratio
equal to 20 dB. Figure 10.15 shows the convergence performance of time varying step
size algorithms when they are used to identify and unknown system of order 260. Here,
the input signal is a white noise sequence with a time varying SNR; firstly, equal to
40dB; next, during a time interval n decreases to 0dB; and, finally, increases again,
becoming equal to 40 dB. Finally, Fig. 10.16 shows the convergence performance of
above mentioned algorithms when they are used to identify a time varying system whose
input signal is a with noise signal with time varying SNR.

Conclusions

The FIR adaptive filter algorithms are the most widely used due to their unconditional
stability and unimodality of their MSE, which ensures the convergence to the global
minimum. Two different approaches have been analyzed: the recursive least square
(RLS) and the least mean square (LMS) approaches. The first one provides fast
convergence rates and is robust to additive noise, although its computational complexity
is very high for many practical applications. The second one, on the other hand, has
a very low computational complexity, although its convergence rate is slow and it is
highly sensitive to additive noise.

Several approaches that intend to provide a compromise between the RLS and LMS
algorithms have been proposed and analyzed in this chapter. Evaluation results have
demonstrated that, in general, the new algorithms provide better performance than the
LMS with a slightly increase in their computational complexity.
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Chapter 11

FREQUENCY DOMAIN ADAPTIVE FILTERS BASED

ON SUBBAND DECOMPOSITION

One important approach to reduce the computational complexity of adaptive filters is
that based on subband decomposition in which the input signals are represented in terms
of a set of N near orthogonal signal components using an orthogonal transformation.
Such representation makes possible processing schemes in which a lower order adaptive
filter is inserted in each subband whose coefficients vectors can be independently or
jointly updated, allowing the use of efficient algorithms such as the Recursive Least
Square (RLS) algorithm with reduced computational complexity, when fast convergence
rates are required, as well as efficient versions of Fast Least Mean Square algorithms
when large filter orders are needed. This chapter presents the development of such
algorithms along with computer simulation showing their convergence performance.

11.1. Introduction

Adaptive filtering has been a subject of active research and considered as a desirable
alternative to conventional transversal filters for several practical problems, such as
echo and noise canceling, linear prediction, etc. [1]. During this time several efficient
algorithms have appeared in literature, most of them using the direct realization form [2–
6]. However, the direct realization form of fast convergence adaptive filter algorithms,
such as the RLS algorithm, is in general too large for many practical applications [1].
On the other hand, in real time signal processing, a significant amount of computational
effort can be saved if the input signals are represented in terms of a set of orthogonal
signal components [6]. This is because the representation admits processing schemes in
which each of these signal components can be independently processed.

A suitable adaptive filter algorithm, when large filter orders are required, is the fast
LMS algorithm. However, these adaptive filter algorithms present slow convergence
rates and introduce long processing delays. These facts limit the use of these algorithms
to several practical applications. Thus, in order to use these algorithms in a large number
of practical applications, the convergence rate must be increased and the processing time
reduced as much as possible.

Taking these facts into account, this chapter presents parallel form FIR adaptive filter
algorithms based on the subband decomposition approach in which the input signals are
split into a set of approximately orthogonal signal components by using the discrete
cosine transform. Subsequently, a bank of FIR filters is inserted in each subband, whose
parameters are updated to minimize a common error. Computer simulation results
show that the subband decomposition-based FIR adaptive filter structures improve the
characteristics of conventional adaptive filter structures.
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11.2. FIR Adaptive Filter Structure Based on Subband
Decomposition Approach

Consider the output signal y(n) of an Nth-order transversal filter, given by

y(n) = XT
F (n)HF , (11.1)

where

XF (n) =
[
XT(n),XT(n − M),XT(n − 2M), . . . ,

. . . ,XT (n− (L− 2)M),XT (n− (L− 1)M)
]T

, (11.2)

X(n− kM) = [x(n− kM),x(n− kM − 1),x(n− kM − 2), . . .

,x(n− (k + 1)M + 2),x(n− (k + 1)M + 1)]T , (11.3)

is the input vector, and

HF =
[
HT

0 ,H
T
1 ,H

T
2 , . . . ,H

T
L−1

]T
, (11.4)

Hk =
[
hkM ,hkM+1,hkM+2, . . . ,h(k+1)M−1

]T
(11.5)

is the adaptive filter coefficients vector. Substituting (11.2) and (11.4) into (11.1), we
obtain that

y(n) =
L−1∑

k=0

XT (n− kL)Hk. (11.6)

Next, defining
Hk = CTAk, (11.7)

where C denotes an orthogonal transformation such as the DFT, DCT, etc., and
substituting (11.7) into (11.6), we obtain

y(n) =
L−1∑

k=0

(CX(n− kM))T Ak =
L−1∑

k=0

UT (n− kM)Ak, (11.8)

where UT (n− kM) = (CX(n− kM))T and

U(n− kM) = [u0(n− kM),u1(n− kM),u2(n− kM), . . . ,

. . . ,u3(n− kM), . . . ,uM−1(n− kM)]T (11.9)

Ak =
[
ak,1, ak,2,, . . . , ak,(M−1)

]T
. (11.10)

Using (11.9) and (11.10), we can represent y(n) as

y(n) =
L−1∑

k=0

M−1∑

r=0

ak,rur(n− kM). (11.11)

Let U(n− kM) denote the discrete Fourier transform (DFT) of input signal. Then
(11.11) defines the output signal of the short delay fast least mean square, SDFLMS,
adaptive filter proposed in [10] and described in Section 11.3. This approach, which
is a generalization of the conventional FLMS adaptive filter algorithm, reduces the
processing time and increases the convergence rate of conventional FLMS, providing
at the same time perfect reconstruction properties. This structure performs fairly well
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using block processing with gradient search based algorithms. However, when LMS-
Newton type algorithms are required to increase the convergence rate, the computational
complexity can be very high, even if the coefficients of the input signal transformation
be mutually uncorrelated.

To reduce the computational complexity of the adaptive filter structure when a RLS
type adaptation algorithm is used, firstly interchange the summation order as follows:

y(n) =
M−1∑

r=0

L−1∑

k=0

ak,rur(n− kM) (11.12)

and define

Vr(n) = [ur(n),ur(n−M),ur(n− 2M),ur(n− 3M), . . . ,

. . . ,ur(n− (L− 2)M),ur(n− (L− 1)M)]T , (11.13)

Gr =
[
a0,r, a1,r, a2,r, . . . , a(L−1),r

]T
, (11.14)

so, that (11.12) becomes

y(n) =
M−1∑

r=0

GT
r Vr(n). (11.15)

Equation (11.15) denotes the output signal of the subband decomposition based filter
structure proposed in [8] and [9], which also has perfect reconstruction properties with-
out regard for the statistics of the input signal or the adaptive filter order. Figure 11.1
shows that the realization forms given by (11.11) and (11.15) are equivalent.

11.2.1. Adaptation algorithm. Consider the output error of the SBDADF struc-
ture, shown in Fig. 11.1, which is given by

e(n) = d(n) −
(
M−1∑

r=0

GT
r Vr(n)

)
, (11.16)

where Gr and Vr are given by (11.14) and (11.13), respectively.
The performance of the proposed ANC structure strongly depends on the choice of

the orthogonal transformation, because in the development of adaptive algorithm it is
assumed that the transformation components are fully uncorrelated. Several orthogonal
transformations that approximately satisfy this requirement could be used, such as the
discrete cosine transform (DCT), the discrete Fourier transform (DFT), the discrete
sine transform (DST), the Walsh–Hadamard transform, etc. Among them, the DCT
appears to be an attractive alternative because it is a real transformation and has better
orthogonalizing properties than other orthogonal transformations. Besides, it can be
estimated in a recursive form by using a filter bank whose rth output signal is given by
[11, 12] (See appendix)

ur(n) = 2 cos
(
πr

M

)
ur(n− 1) − ur(n− 2)−

− cos
(
πr

2M

)
{x(n−M − 1) − (−1)rx(n− 1)−

−x(n−M) + (−1)rx(n)} . (11.17)
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Fig. 11.1. Equivalence between the realization form of SDFLMS [15] and the subband decompo-
sition based ADF [11].

To achieve high convergence rates, the coefficients vector, Gr, r = 0, 1, 2, . . . ,M − 1,
will be estimated so that the sum of squared errors, ε(n), given by

ε(n) =
n∑

k=1

(
d(k) −

M−1∑

r=0

GT
r V̂r(k)

)2

, (11.18)

ε(n) =
n∑

k=1

(
d(k) − GT V̂(k)

)2
(11.19)

attains a minimum, where

G =
[
GT

1 ,G
T
2 ,G

T
3 , . . . ,G

T
L−1

]T
, (11.20)

V̂(n) =
[
VT

0 (n),VT
1 (n),VT

2 (n), . . . ,VT
M−1

]T
, (11.21)

and Vr and Gr(n) are given by (11.13) and (11.14), respectively.
Multiplying (11.21) on the left by V(n) and using the orthogonality property of the

least square estimation, we obtain
[

n∑

k=1

V(k)VT (k)

]
G(n) =

n∑

k=1

d(k)V(k). (11.22)

Next, assuming that the DCT coefficients of the input signal are mutually uncorre-
lated [10–12], we can write equation (11.22) as follows:

[
n∑

k=1

Vr(k)V
T
r (k)

]
Gr(n) =

n∑

k=1

d(k)Vr(k), (11.23)
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Gr(n) =

[
n∑

k=1

Vr(k)V
T
r (k)

]−1 n∑

k=1

d(k)Vr(k), (11.24)

where r = 0, 1, 2, 3, . . .,M − 1. Equation (11.24) is the solution of the Wiener–Hopf
equation, which can be solved by a recursive method based on the Matrix Inversion
Lemma as follows:

Gr(n+ 1) = Gr(n) + µKr(n)e(n), (11.25)

where e(n) is the output error given by equation (11.16), µ is the convergence factor
that controls the stability and convergence rate [1],

Kr(n) =
Pr(n)Vr(n)

λ+ V
T
r (n)Pr(n)Vr(n)

, (11.26)

Pr(n+ 1) =
1

λ

[
Pr(n) − Kr(n)VT

r (n)Pr(n)
]
, (11.27)

and Vr(n) V̂r(n) is given by equation (11.13). Taking into account that [1]

Kr(n) = Pr(n)Vr(n), (11.28)

we can represent equation (11.25) as follows:

Gr(n) = Gr(n− 1) + µPr(n+ 1)e(n)Vr(n). (11.29)

Equation (11.29), when µ <1, defines the so-called LMS-Newton algorithm, which
converges to the optimal solution when 0< µ <1. Figures 11.2 and 11.3 show the
subband decomposition adaptive filter structure when it is updated using the modified
RLS or LMS-Newton algorithm.

Fig. 11.2. Parallel form FIR filter structure using generalized subband decomposition.

11.2.2. Evaluation Results. To evaluate the actual convergence performance of
parallel realization form FIR ADF, we used a system identification configuration. The
FIR ADF system is required to identify an unknown system of order 20, using 4
subbands with a sparsity factor L equal to 5. Figures 11.4 and 11.5 show the
convergence performance of the parallel form FIR ADF algorithm with a block diagonal
autocorrelation matrix with a constant convergence factor and time varying convergence
factor, respectively, when the input signal is an autoregressive process of 15th order.
The signal-to-noise ratio is equal to 45 dB. The convergence performance obtained by
using a conventional RLS algorithm with a full matrix autocorrelation matrix [1] is also
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Fig. 11.3. r−th stage of proposed structure using the DCT as orthogonal transformation.

shown for comparison. Figures 11.6 and 11.7 show the convergence performance of the
parallel FIR ADF algorithm with a constant and time varying convergence factor when
the input signal was an actual speech signal with a signal-to-noise ratio of 25 dB. The
convergence performance obtained by using a conventional RLS algorithm [1] is also
shown for comparison in Fig. 11.7.

Computer simulations show that the parallel form FIR ADF algorithm provides
quite similar convergence performance with a much less computations cost than the
conventional RLS algorithm, although with a larger misadjustment when a fixed µ is
used. The reason is that the DCT does not fully decorrelate the input signal. However
the misadjustment decreases when a time varying µ(n) is used as shown in Fig. 11.7.

Fig. 11.4. Convergence performance of adaptive algorithm using block diagonal autocorrelation
matrix with constant step size, compared with the convergence performance of conventional RLS

algorithm with full input signal autocorrelation matrix.
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Fig. 11.5. Convergence performance of adaptive algorithm using block diagonal autocorrelation
matrix with time varying step size, compared with the convergence performance of conventional

RLS algorithm with full input signal autocorrelation matrix.

Fig. 11.6. Convergence performance of adaptive algorithm using block diagonal autocorrelation
matrix with time varying and constant step sizes.

11.3. Short Delay Fast LMS Algorithm

Two of the most important problems limiting the use of frequency domain adaptive
filters in several practical applications are a low convergence rate and long processing
delay. Many efforts have been carried out to reduce the processing delay [13]–[18], to
increase the convergence rate [20], or both of them [10]. This section presents a review
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Fig. 11.7. Convergence performance of the FIR adaptive algorithm using a block diagonal
autocorrelation matrix and a constant convergence factor equal to 1.0 (1), and a time varying
convergence factor (2) respectively. The performance of conventional RLS algorithm is also shown

for comparison. The input signal was a white noise sequence.

of the short delay fast LMS algorithm [10] that simultaneously increase the convergence
rate and reduce the processing delay.

11.3.1. Short Delay Fast LMS Algorithm. Consider the output signal of a finite
impulse response, given by

ŷ(kL+ j) = WT (k)X(k), (11.30)

where k is the block number, j=0,1,. . . ,L-1,

W(k) = [W0(k),W1(k), . . . ,WM−1(k)]
T , (11.31)

or
Wm(k) = [wmL(k),wmL+1(k), . . . ,wmL+L−1(k)]

T , (11.32)

is the vector of coeficientes of the adaptable filter, and

X(k) = [X0(k),X1(k), . . . ,XM−1(k)]
T , (11.33)

or

Xm(k) = [x((k −m)L+ j),x((k −m)L+ j − 1), . . . ,

, . . . ,x((k −m)L+ j − L+ 1)]T , (11.34)

is the input vector. Assuming that the coefficients vector W(k) remains constant, at
least during L sampling periods, the output filter y(kL+j) can be obtained using the
fast convolution methods with a 50% overlap. Thus, using the linearity property of
the Fourier transform, after some manipulations, from (11.30)–(11.34) we obtain [10],
[15]–[17]

ŷ(kL+ j) = Last L terms of FFT−1

[
M−1∑

m=0

Bm(k)Cm(k)

]
, (11.35)



11.3. Short Delay Fast LMS Algorithm 269

where FFT−1 denotes the inverse Fourier transform,

Cm(k) = FFT [Wm(k), 0, 0, . . . , 0, 0] , (11.36)

Bm(k) = diag {FFT [Xm−1(k),Xm(k)]} . (11.37)

Equations (11.35)–(11.37) produce the SDFLMS structure shown in Figs. 11.1 and
11.8.

Fig. 11.8. Realization form of short delay FLMS (SDFLMS) adaptive filter.

11.3.2. Adaptation Algorithm. When a block LMS adaptive algorithm is used,
the FIR filter coefficients vector in the kth block is given by

Wm(k + 1) = Wm(k) + β∇m(k), (11.38)

where

∇m(k) =
1

L

L−1∑

j=0

e(kL+ j)Xm(kL+ j) (11.39)

is the estimated gradient in the kth block, e(kL+j) is the output error, and Xm(kL+j) is
the input vector. Equation (11.39) defines the cross-correlation between the input vector
and the output error, which can be estimated using the overlap-save method with a 50%
overlap as follows:

∇m (k) = First L terms of FFT−1[B∗
m(k)E(k)], (11.40)

where

E(k) = FFT [0, 0, 0, . . . , 0, e(kL), e(kL + 1), e(kL+ 2), . . . , e(kN +N − 1)]T , (11.41)
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and B∗
m(k) denotes the complex conjugated of Bm(k) given by (11.37). The frequency

domain coefficients vector Cm(k) can also be adapted directly in the frequency domain.
Thus, Cm(k + 1), the frequency transform of Wm(k + 1) is given by

Cm(k + 1) = Cm(k) + β Gm(k),m = 0, 1, 2, . . . ,M − 1, (11.42)

where
Gm(k) = [FFT [∇m(k), 0,0 . . . , 0]]T . (11.43)

11.3.3. Convergence Condition. To derive a convergence factor that takes into
account the spectral characteristics of input signals, substitute (11.39) into (11.38)
and assume that the input signal is stationary in a wide sense. Thus, after some
manipulations we obtain

W(k) = W(k − 1) + βL [P− RW(k − 1)] , (11.44)

where

P =
1

L

L−1∑

j=0

d(kL+ j)XT (kL+ j) (11.45)

is the cross-correlation between the reference and input vector and

R =
1

L

L−1∑

j=0

X(kL+ j)XT (kL+ j) (11.46)

is the input vector autocorrelation matrix. Taking the expectation of (11.46) and
subtracting in both sides the optimal solution, we obtain

V(k) = (I− βLQ)kV(0), (11.47)

where

V(k) = T(W(k) − Wop), (11.48)

Q = diag[λ1,λ2, . . . ,λN ], (11.49)

T is an orthogonal transformation, and λr is the r-th eigenvalue of the input vector
autocorrelation matrix R. From (11.47) it follows that

vr(k) = (1−Nβλr)
kvr(0). (11.50)

Then, V (k) will converge exponentially to zero andW (k) will convergence to the optimal
solution if

0 < β <
2

Lλmax
. (11.51)

Equation (11.51) determines the maximum value β allowing the filter convergence.
However, of larger interest is to determine the convergence factor providing high
convergence rates when gradient search based adaptive algorithms are used. The optimal
factor can be obtained when the fastest and slowest mode converge at the same speed.
That is, if [18]

|1− Lβλmax| = |1− Lβλmin| , (11.52)

then
βf =

2

L(λmax + λmin)
. (11.53)

To estimate the eigenvalues of the input vector autocorrelation matrix is a difficult
task, which requires considerable computational effort because the orthogonal matrix
required to this end is signal dependent and, in most cases, there is no fast algorithm to
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compute it. In order to reduce the computational cost required for eigenvalue estimation,
the DFT can be used. Although the eigenvalues obtained using the DFT are only
approximations of the real ones, they are sufficiently good for the solution of many
practical problems. Then, assuming that the input signal is stationary in a wide sense,
the eigenvalues can be estimated as follows:

LQ̂ =
L

k

k∑

i=1

|CX(i)|2, (11.54)

where CX(i) denotes the Fourier transform of the input signal, x(kL+j), and |a| is the
absolute value of a. Thus, from (11.54) it follows that the maximum and minimum
eigenvalues can be obtained by estimating the maximum and minimum values of the
input signal power spectral densities. In order to estimate the power spectral density
without a significant increase in the computational complexity, the averaged modified
periodograms with a 50% overlap can be used, which are estimated as follows

LQ̂(k) = (1− γ)Q̂(k − 1) + γ

[
M−1∑

m=0

Bm(i)B∗
m(i)

]
, (11.55)

where γ−1 is approximately equal to the number of blocks used for spectral density
estimation. Finally, defining

LQ̂(k) = (ζ1, ζ2, . . . , ζN ), (11.56)

from (11.53), we obtain

βf =
2

max(ζ1, ζ2, . . . , ζN ) + min(ζ1, ζ2, . . . , ζN )
, (11.57)

where max(ζ1, ζ2,. . . , ζN ) is the maximum value of (ζ1, ζ2,. . . , ζN ), which will be the
estimate for Lλmax, and min(ζ1, ζ2,. . . , ζN ) is the minimum value of (ζ1, ζ2,. . . , ζN ),
which will be the estimate for Lλmin.

11.3.4. Evaluation Results. The simulation results, used to evaluate the conver-
gence performance of SDFLMS algorithm, were obtained using a system identification
configuration, although the SDFLMS can be used in any other configuration discussed
in the accompanying chapters. The criterion used to evaluate the convergence charac-
teristics was the normalized mean-square error given by

MSE = 10 log 10
E[(y(kL+ j) − ŷ(kL+ j))2]

E[y2(kL+ j)]
, (11.58)

where y(kL + j) denotes the unknown system output signal, which is the reference
signal in the absence of noise and y(kL+ j) is the adaptive filter output.

Figure 11.9 shows the convergence performance of the SDFLMS algorithm with
four different block delays (N/M) when it is required to identify an unknown system
of order 128. The signal-to-noise ratio between the unknown system output and the
additive noise is equal to 35 dB. Figure 11.10 shows the convergence performance of
the SDFLMS when it is required to identify an unknown system of order 128. The
input signal was an actual speech signal with a signal-to-noise ratio equal to 40 dBs.
The convergence performance of the FLMS is also shown for comparison. Figure 11.11
shows the convergence performance of the SDFLMS when it is required to identify an
unknown system of order 128. The input signal was a white nose sequence with a
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Fig. 11.9. Convergence performance of SDFLMS using 4 different processing delays. The input
signal is a white noise sequence with a signal-to-noise ratio equal to 35 dB.

Fig. 11.10. Convergence performance of SDFLMS using 2 different block delays when required
to identify an unknown system of order 128. The input signal was an actual speech signal with

a signal-to-noise ratio equal to 20 dB. The convergence of FLMS is shown for comparison.

signal-to-noise ratio equal to 40 dB. The convergence performance of other previously
proposed algorithms such as the MDF, FBAF, and JALG are also shown for comparison.

The evaluation results show that the SDFLMS provides better convergence perfor-
mance than the conventional FLMS algorithm and other previously proposed FLMS
algorithms with shorter processing delays.
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Fig. 11.11. Convergence performance of SDFLMS with 32 samples processing delays, when it is
requiered to identify an unknown system of order 128. The input signal was a white noise signal
with a sgnal-to-noise ratio equal to 40 dB. The convergence performance of FBAF, MDF and

JALG are also shown for comparison.

Conclusions

This chapter presented parallel form adaptive filter structures based on a generalized
subband decomposition, in which each subfilter can be updated independently, when RLS
algorithms (SDADF) are used, or jointly, when the FLMS-type algorithms are used
(SDFLMS). The SDADF structure has no numerical stability problems since the subband
filters order updated using the modified RLS or Gauss-Newton algorithm is generally
small. Computer simulations show that SDADF algorithms provide a convergence rate
very close to that of the standard RLS adaptive algorithm or Gauss-Newton algorithm
and a much lower computational cost, although with a greater misadjustment. A time
varying convergence factor is used to reduce specially misadjustment, when the additive
noise level is relatively large.

The SDFLMS algorithm uses the linear property of FFT to implement the FLMS
algorithm using a linear combination of an actual FFT vector of order L and L–1
previously computed FFT vectors. This reduces the processing delay and increases
the convergence rate, although the computational complexity increases. Computer
simulations show that the SDFLMS excel in convergence rate the FLMS and other
previously proposes FLMS-type algorithms.
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4. Pérez-Meana, H. and Amano, F. Acoustic Echo Cancellation Using Multirate Techniques.
IEICE Trans., vol. E74, no. 11, pp. 3559–3568, 1991.

5. Amano, F., Perez-Meana, H., De Luca, A., and Duchen, G.. A Multirate Acoustic Echo
Canceler Structure. IEEE Trans. on Communications, vol. 43, No. 7, pp. 2172–2176, July
1995.

6. Perez-Meana, H. and Tsujii S. A System Identification Using Orthogonal Functions. IEEE
Trans. on Signal Processing, vol. 39, no. 3, March 1991.

7. Nakano-Miyatake, M., Perez-Meana, H., Ortiz-Balbuena, L., Niño-de-Rivera, L., and

Sanchez, J. A continuous Time RLS adaptive Filter Structure Using Hopfield Neural Net-
works, Proc. of ISITA’96, vol. II, pp. 614–617, Sept. 1996.

8. Mariane R., Petraglia and Sanjit, K. Mitra Adaptive FIR Filter Structure Based on the
Generalized Subband Decomposition of FIR Filters. IEEE Trans. on Circuits and Systems-II,
vol. 40, no. 6, pp. 354–362, June 1993.

9. Tapia Sánchez, D., Bustamante, R., Pérez Meana, H., Nakano Miyatake, M. Single
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Appendix

To further reduce the computational complexity of the SBDADF adaptive system
shown in Figs. 1 and 2, an on-line implementation of the DCT would be required. To this
end, consider the discrete cosine transform of an input signal x(n) at time instants n,



11.3. Appendix 275

(n− 1) and (n− 2), given by

C(n, r) = α(k)
N−1∑

m=0

x(n−[m−1]+m) cos(π(2m+1)r/2N), (A.11.1)

C(n−1, r) = α(k)
N−1∑

m=0

x(n−1−[m−1]+m) cos(π(2n+1)r/2N), (A.11.2)

C(n−2, r) = α(k)
N−1∑

n=0

x(n−2−[m−1]+m) cos(π(2n+1)r/2N). (A.11.3)

Next, taking into account that

2 cos(a) cos(b) = cos(a− b) + cos(a+ b). (A.11.4)

After some manipulations we obtain that the r-th component of the DCT of input signal
can be estimated as the output signal of a filter bank whose r-th stage has a transfer
function given by

Cr(z) =
cos

πr

2N

(
(−1)r − (−1)rz−1 − z−N + z−N−1

)

1− 2 cos
rπ

N
z−1 + z−2

. (A.11.5)



Chapter 12

IIR ADAPTIVE FILTER ALGORITHMS

12.1. Introduction

The finite impulse response adaptive filters (FIR-ADF) are widely used in most
practical applications because they are unconditionally stable and their mean square
error surface only has a global minimum [1]. However, the FIR-ADF has several
limitations to model systems whose transfer functions have poles as well as zeros. These
limitations become particularly important when the adaptive system is required to cancel
acoustic echoes and multipath interferences and for several other applications in which
the physical processes are properly modeled as the output of an infinite impulse response
system [2].

The development of IIR adaptive filter (IIR-ADF) algorithms is motivated mainly
by the potential reduction in the computational complexity and the ability to model
sharp resonances with a much smaller number of filter coefficients, because they can
model rational transfer functions in a more efficient way than the FIR-ADF, providing
significantly better performance with same number of coefficients as its FIR counterparts
[2, 3]. However, the IIR adaptive filters still present several drawbacks that limit their
use in several practical applications, such as stability problems, convergence to one
of several local minima of the mean-square error surface when gradient-search-based
adaptive algorithms are used, slow convergence rates, etc [2, 3]. These problems must
be solved before reliable IIR adaptive structures can be used in practical applications. To
this end, over the last three decades, substantial research has been carried out to develop
IIR-ADF algorithms capable to solve some of the above-mentioned problems. Among
them, we have the equation error method based IIR adaptive algorithm [3], which has
unimodal mean square error (MSE) surface, although its coefficients are based on the
presence of additive noise and present stability problems [3]. To avoid the coefficients
bias, several output error based methods have been proposed [3] such as the so-called
recursive Gauss–Newton algorithm [3, 4], the recursive maximum likelihood algorithms
(RML) [4, 5], the recursive instrumental variable method (RIV) [4, 5], the recursive
prediction error algorithm [3], the approximate gradient methods [3], etc. All of them
solve the bias coefficients problem, using the inverse of Hessian matrix, although they
still present stability problems and convergence to a local minimum of the MSE surface.
To reduce the convergence problems, the HARF (Hyperstable adaptive recursive filter)
and SHARF (Simplified hyperstable recursive filter) were proposed [2, 3]. The HARF
and SHARF algorithms guarantee the convergence if the strictly positive real (SPR)
condition is satisfied. However, in most cases the SPR condition is not satisfied [3]. All
of these algorithms use a direct realization form with a difficult stability test. Besides,
the computational complexity is due, mainly, to the estimation of the inverse of Hessian
matrix.

Several other approaches have been proposed to solve the stability problems without
using a direct realization form. One of them is an IIR structure with fixed poles
derived using a set of orthogonal functions [6]. However, although this structure does
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not have stability problems and its MSE surface is unimodal, it provides a suboptimal
solution. IIR adaptive filter structures using parallel and lattice structures have also
been proposed [3, 7]. These structures, although with a trivial stability test, does not
guarantee the convergence to the global minimum of the MSE surface. Polyphase IIR
adaptive structures [8] have also been proposed, with convergence much higher than
the achieved by conventional IIR-ADF structures, although the global convergence and
stability problems still remain. Thus, although there have been proposed a relatively
large number of IIR-ADF, several problems associated with the IIR-ADF that must be
solved still remain, namely, slow convergence, potential filter instability, mean square-
error function with multiple local minima, etc. [9–13].

Finally, to overcome some of the above-mentioned problems, a family of adaptive
algorithms combining the equation error and output error methods, called Steiglitz-
MacBride methods, using either direct or lattice realization forms,have been proposed
[11]. Among them, some of the most successful algorithms use a cascade of FIR
transversal filter and AR lattice structures. These filter structures, which can be updated
using either the Steiglitz–MacBride method or a gradient-based adaptive algorithm, have
trivial stability test, although, in general, the lattice-based adaptive filters have a larger
computational complexity than the direct realization form IIR-ADF structures.

This chapter presents a review of IIR adaptive filters without stability problems, using
orthogonalized structures, as well as a low complexity cascade lattice IIR adaptive filter
algorithms using the Steiglitz–MacBride method, and a gradient-search based adaptive
algorithm, in which the derivatives involved in the adaptation processes are estimated
using the simultaneous perturbation stochastic approximation. Computer simulations
are given to show the actual performance of presented IIR adaptive algorithms.

12.2. Adaptive Filters Based on Equation Error Method

The widely used IIR adaptive filter algorithm is based on the equation error in which,
during the adaptation process, it is assumed that, after convergence is achieved, the
filter output y(n) becomes very close to the reference signal d(n). Thus, using d(n)
instead of y(n) during the adaptation process, the MSE surface becomes a quadratic
function of the coefficients vector, although, due to the presence of additive noise, this
assumption does not always lead in this situation to a biased solution.

Consider the adaptive filter output given by [4]

y(n) = WT (n)X(n), (12.1)

where

X(n) = [x(n),x(n− 1),x(n− 2), . . . ,

. . . ,x(n−N + 1), y(n− 1), y(n− 2), . . . , y(n−M + 1)]T (12.2)

is the input vector and

W(n) = [a0(n), a1(n), . . . , aN−1(n), b1(n), b2(n), . . . , bM−1(n)]T (12.3)

is the coefficients vector.

12.2.1. Adaptive Algorithm. Consider the output error given by

e(n) = d(n) − y(n), (12.4)

where y(n) is given by (12.1), d(n) is the reference signal, and W(n) is the coefficients
vector which will be updated so that the mean-square value of e(n) attains a minimum.
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However a direct minimization is a nonlinear problem because the input vector X(n)
is a function of W(n). To solve this problem, we assume that after convergence the
filter output y(n) becomes close to the reference signal d(n) and then y(n) is becomes
approximately given by [4]

y(n) = WT (n)Ψ(n), (12.5)

where,

Ψ(n) = [x(n),x(n− 1),x(n− 2), . . . ,

. . . ,x(n−N + 1), d(n− 1), d(n− 2), . . . , d(n−M + 1)]T . (12.6)

The optimal coefficients vector W(n) will be obtained from the Wiener–Hopf equation,
that is

∂

∂W
E
[(
d(n) − WT (n)Ψ(n)

)2]
= 0. (12.7)

This expression is the same equation used to update the coefficients vector in the FIR
filter. Then W(n) can be updated using either the RLS or LMS algorithms presented in
other chapter. Thus, if the RLS algorithm is used, W(n) becomes

W(n) = W(n− 1) + Q(n)e(n)Ψ(n), (12.8)

where

Q(n) =
1

λ
[Q(n− 1) − Q(n− 1)X(n)XT (n)Q(n− 1)

λ+ X
T (n)Q(n− 1)X(n)

]. (12.9)

On the other hand, if the LMS algorithm is used, the coefficients vector becomes [4]

W(n) = W(n− 1) + µe(n)Ψ(n). (12.10)

12.3. Adaptive Filters Based on the Output Error Method

Consider that d(n) and y(n) denote the reference and adaptive filter output, respec-
tively, such that the output error is given by [4]

e(n) = d(n) − y(n), (12.11)

where
y(n) = WT (n)X(n) (12.12)

denotes the output signal,

X(n) = [x(n),x(n− 1),x(n− 2), . . . ,

. . . ,x(n−N + 1), y(n− 1), y(n− 2), . . . , y(n−M + 1)]T (12.13)

is the input vector,

W(n) = [a0(n), a1(n), . . . , aN−1(n), b1(n), b2(n), . . . , bM−1(n)]T (12.14)

is the coefficients vector, which will be estimated so that [4]

ε (W,n) =
1

2n

n∑

k=1

e2(k) (12.15)
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attains a minimum. However, since ε(W,n) is a nonlinear function of W, ε(W,n) must
be numerically minimized. To this end, consider the Taylor series expansion of ε(W,n)
around W(n− 1) which is given by [4]

ε(W(n)) = ε(W(n− 1)) + ε′(W(n− 1))[W − W(n− 1)]+

+ (1/2)[W − W(n− 1)]T ε′′(W(n− 1))[W − W(n− 1)]+

+ o
[
|W − W(n− 1)|2

]
. (12.16)

Minimizing (12.16) with respect to W(n), we obtain [4]

W(n) = W(n− 1)− [ε′′(Wn− 1))]
−1

[ε′(W(n− 1))]
T

+ o [|W − W(n− 1)|] . (12.17)
Next, define Ψ(n) as the derivative of e(n) with respect to the coefficients vector, that
is

Ψ(n) = −
[
∂e(n)

∂W

]T
, (12.18)

and then

ε′(W(n)) =
1

2n

n∑

k=1

∂e2(k)

∂W
, (12.19)

ε′(W(n)) =
1

n

n∑

k=1

e(k)
∂e(k)

∂W
, (12.20)

ε′(W(n)) = − 1

n

n∑

k=1

e(k)Ψ(W, k). (12.21)

In a similar form, from (12.21) it follows that [4]

ε′(W(n− 1)) = − 1

n− 1

n−1∑

k=1

e(k)Ψ(W, k) (12.22)

and then, from (12.21) and (12.22), it follows that

ε′(W(n)) = − 1

n− 1
.
n− 1

n

n−1∑

k=1

e(k)Ψ(W, k) − 1

n
e(n)Ψ(W,n), (12.23)

ε′(W(n)) = − 1

n− 1

n−1∑

k=1

e(k)Ψ(W, k)−

− 1

n

{
− 1

n− 1

n−1∑

k=1

e(k)Ψ(W, k)+e(n)Ψ(W,n)

}
, (12.24)

ε′(W(n)) = ε′(W(n− 1) − 1

n
{ε′(W(n− 1)) + e(n)Ψ(W,n)} . (12.25)

Now, taking the derivative of (12.25) with respect to W, we obtain [4]

ε′′(W(n)) = ε′′(W(n− 1))−
− 1

n

{
ε′′(W(n− 1)) − Ψ(W(n))ΨT (W(n)) + e(n)e′′(n)

}
. (12.26)

Next, to evaluate (12.26), the following assumptions must be done [4]:
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1. Assuming that W(n) is in the neighborhood of W(n− 1), this approach must be
good enough for large values of n. In this situation, this approach also leads to
the following assumptions: Neglect o [|W − W(n− 1)|] in (12.16) and (12.17) and
assume that ε′′(W(n)) = ε′′(W(n− 1)).

2. Assume that W(n − 1) is the optimal value estimated at time n-1, such that
ε′(W(n− 1)) = 0.

3. Finally, assume that e′′(n)e(n) = 0. The reasoning behind this is the fact that,
close to the optimum, the output error becomes nearly white and then the
expectation of e(n)e(n− 1) becomes close to zero.

With these assumptions, from (12.26) it follows that [4]

ε′′(W(n)) = ε′′(W(n− 1)) +
1

n

{
Ψ(W,n)ΨT (W,n) − ε′′(W(n− 1))

}
, (12.27)

R(n) = R(n− 1) +
1

n

{
Ψ(W,n)ΨT (W,n) − R(n− 1)

}
, (12.28)

where R(n) denotes an approximation of ε′′(W(n)). Next, using assumption 2
in (12.25), we obtain

ε′(W(n)) = − 1

n
e(n)Ψ(W,n). (12.29)

Finally usign assuption 1, from (17) we obtain [4]

W(n) = W(n− 1) + R(n)−1Ψ(W,n)e(n), (12.30)

where [4]

R(n) = (1− γ)R(n− 1) + γΨ(W,n)ΨT (W,n), (12.31)

0 < γ < 1.

Several forms for estimating R−1(n) can be used as the input data instead of
estimating R(n) and then inverting it. One of the most used methods is the matrix
inversion lemma which establish that

[A + BCD] =
[
A−1 + A−1B

[
DA.1B + C−1

]−1
]
. (12.32)

Then, setting A = (1− γ)R(n− 1), B = ψψψψψψψψψ, C = γ, and D = ψψψψψψψψψ, from (12.31) and (12.32)
we obtainn [4]

R−1(n) =
1

(1− γ)

(
R−1 − R

−1ψψψψψψψψψ(W,n)ψψψψψψψψψT (W,n)R−1

ψψψψψψψψψT (W,n)Rψψψψψψψψψ(W,n) − (1− γ)/γ

)
, (12.33)

where

ψk(W,n) = x(n− k) +
M−1∑

m=1

bmψk(W,n−m) k = 0, 2, . . . ,N − 1, (12.34)

ψN+k(W,n) = y(n− k) +
M−1∑

m=1

bmψN+k(W,n−m) k = 1, 2, . . . ,M − 1 (12.35)

and bm is the (N+m)-th coefficient of vector W given by (12.14).

12.4. Orthogonalized IIR Adaptive Filter Algorithms

IIR adaptive filtering has been a subject of active research during the last three
decades and considered as a desirable alternative to conventional adaptive filters struc-
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tures for the solution of several practical problems, such as echo and noise canceling,
linear prediction, etc.[14]. During this time, several algorithms have appeared in
literature, most of them using the direct realization form [15–17]. Unfortunately, the
stability test generally required after each filter update can be computationally expensive
[1, 2]. This problem was solved using parallel and cascade realization forms that allow
a trivial stability test, although, in some situations, algorithms could experience some
convergence problems and slow convergence rate. However, their low computational
complexity to perform their stability test does them a desirable alternative to IIR direct
realization form.

On the other hand, in real time signal processing, a significant amount of compu-
tational effort can be saved if the input signals are represented in terms of a set of
orthogonal signal components [7, 21]. The reason is that the representation admits
processing schemes in which each of these signal components can be independently
processed.

Taking this fact into account, this chapter presents an IIR structure based on the
output error method in which the input signals are split into a set of approximately
orthogonal signal components by using the discrete cosine transform. Subsequently an
IIR-ADF is inserted in each subband whose parameters are independently updated to
minimize the total error. The computer simulation results show that all the proposed
types of subband adaptive filter structures reduce computational complexity considerably
with a fairly good convergence property.

12.4.1. Adaptive filter structure. Consider the transfer function H(z) of the direct
form IIR filter which is given by

H(z) =
A(z)

B(z)
, (12.36)

where A(z) and B(z) are polynomials of order L and N , respectively, N > L and N/2
is even. Using the partial fraction expansion technique, H(z) can be rewritten as

H(z) = H1(z) +H2(z), (12.37)

H(z) =
A1(z)

B1(z)
+
A2(z)

B2(z)
, (12.38)

where B1(z) and B2(z) are polynomials of order N/2. Next, taking into account that

(1− z−M ) =

M/2−1∏

r=0

(1− 2 cos(2π/M)z−1 + z−2) (12.39)

and

(1 + z−M ) =

M/2−1∏

r=0

(1− 2 cos(π(2r + 1)/M)z−1 + z−2), (12.40)

after some manipulation, we get the parallel form IIR structure given by [20]

H(z) =
M−1∑

r=0

Cr(z)Gr(z), (12.41)

where

Cr(z) =
[1− z−1][1− (−1)rz−M ]

1− 2 cos(πr/M)z−1 + z−2
, r = 0, 1, . . . ,M − 1 (12.42)
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Gr(z) =
a0r + a1rz

−1 + a2rz
−2

1− z−1
, r = 0, 1, (12.43)

and

Gr(z) =
aor + a1rz

−1 + a2rz
−2 + a3rz

−3

1− b1rz
−1 − b2rz

−2
, r = 2, 3, . . . ,M − 1. (12.44)

The orthogonarized parallel IIR structure is shown in Figs. 12.1 and 12.2, respec-
tively [8].

Fig. 12.1. Orthogonalized IIR ADF structure based on subband decomposition using DCT.

Fig. 12.2. r-th stage of orthogonalized IIR ADF structure based on subband decomposition using
DCT.

12.4.2. Adaptive Algorithm. The adaptation algorithm used to update the filter
coefficients is a modified form of the Gauss–Newton algorithm presented in Section
12.3, derived under the assumption that the DCT coefficients are fully uncorrelated.
Under this assumption, each IIR ADF can be updated independently. Then the 4M × 4M
Hessian matrix of the parallel form Gauss–Newton algorithm can be replaced by a block
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diagonal matrix where each block has rank= 6, that is

R(n) =




R0(n) 0 0 0 · 0
0 R1(n) 0 0 · 0
0 0 R2(n) 0 · 0
0 0 0 R3(n) 0 ·
· · · · · ·
0 · · 0 0 RM−1(n)



, (12.45)

where

Rr(n) =
n∑

k=1

λn−kUr(k)U
T
r (k), (12.46)

is the r-th Hessian matrix estimated from the input data, λ is the forgetting factor, and
Ur(n) is the information vector whose elements correspond to the estimated gradient of
y(n) for air (i = 0, 1, 2, 3) and bjr (j = 1, 2), respectively. Then the modified parallel
form Gauss–Newton algorithm becomes

Ar(n) = Ar(n− 1) + µR−1
r (n)e(n)Ur(n), (12.47)

where 0 < µ < 1 is the convergence factor, which controls the stability and convergence
rate,

Ur(n) = [u0,r(n),u1,r(n),u2,r(n),u3,r(n),u4,r(n),u5,r(n)]T , (12.48)

is the information vector, whose elements given by

uk,r(n) =
∂y(n)

∂ak,r
, k = 0, 1, 2, 3, (12.49)

uk,r(n) =
∂y(n)

∂bk,r
, k = 4, 5, (12.50)

Fig. 12.3. Convergence performance of orthogonalized IIR structure based on output error method
when it is required to identify an unknown system of order 32. Input signal is AR process.
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Fig. 12.4. Convergence performance of the orthogonalized IIR structure based on the output error
method when it is required to identify an unknown system of order 32. Input signal is speech signal.

can be estimated as follows [3, 7]:

uk,r(n) = cr(n− k) + b1,r(n)uk,r(n− 1) + b2,r(n)uk,r(n− 2), k = 0, 1, 2, 3, (12.51)

uk,r(n) = yr(n− k + 3) + b1,r(n)uk,r(n− 1) + b2,r(n)uk,r(n− 2), k = 4, 5, (12.52)

and R−1
r (n) is the inverse of Hessian matrix, given by [4]

R−1
r (n) =

R
−1
r (n− 1)

λ
− R

−1
r (n− 1)Ur(n)UT

r (n)R−1
r (n− 1)

λ2 + U
T
r (n)R−1

r (n− 1)Ur(n)
. (12.53)

12.4.3. Computer Simulations. Figures 12.3 and 12.4 show the convergence
performance of the orthogonalized parallel IIR structure based on the output error
method, when it is required to identify an unknown system of order 32. In Fig. 12.3
the input signal was a 12-th order AR process, and in Fig. 12.4 it was an actual
speech signal. In both cases the convergence factor was equal to 0.1. The convergence
performance obtained using a parallel structure, with a full autocorrelation matrix and
convergence factor equal to 1, is also shown for comparison

12.5. Cascade Lattice IIR Adaptive Filter

Figure 12.5 shows the IIR structure which consists of a FIR transversal filter to
implement the feed forward sections and a lattice structures to realize the feedback
sections. The reason for using a lattice structure to implement the feedback section is
the fact that, using it, the IIR structure will remain stable if the absolute value of the
reflection coefficients is kept less than one.

To derive the transfer function of the cascade lattice structure shown in Fig.12.5,
consider the all-pole lattice structure shown in Fig. 12.6. From this figure we have

v0(n) = y(n), (12.54)

v1(n) = v0(n) + k1x1(n), (12.55)

v2(n) = v1(n) + k2x2(n). (12.56)
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Substituting (12.53) and (12.55) into (12.56), we obtain

v2(n) = y(n) + k1x1(n) + k2x2(n). (12.57)

In a similar manner, from Fig. 12.6 and equations (12.54)–(12.56) it follows that

v3(n) = v2(n) + k3x3(n), (12.58)

v3(n) = y(n) +
3∑

i=1

kixi(n). (12.59)

Fig. 12.5. Cascade lattice IIR filter structure.

Fig. 12.6. All-pole lattice structure.

Then, in general, it follows that vm(n)is given by

vm(n) = y(n) +
m∑

i=1

kixi(n). (12.60)
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Next, consider the expression forxi(n), i=1,2,. . ., which is given from Fig. 12.6 by

x1(n) = y(n− 1), (12.61)

x2(n) = k1y(n− 1) + y(n− 2). (12.62)

Equations (12.61) and (12.62) can be written as
(
x1(n)
x2(n)

)
=

(
1 0
k1 1

)(
y(n− 1)
y(n− 2)

)
, (12.63)

(
x1(n)
x2(n)

)
=

(
T1 0
k1 T1

)(
y(n− 1)
y(n− 2)

)
, (12.64)

where T1 = 1. Next, consider the expression of x3(n), which is given by

x3(n) = k2y(n− 1) + (k1k2 + k1)y(n− 2) + y(n− 3) (12.65)

which, using equation (12.64), can be written as

(
x1(n)
x2(n)
x3(n)

)
=

(
1 0 0
k1 1 0
k2 k1 + k1k2 1

)(
y(n− 1)
y(n− 2)
y(n− 3)

)
, (12.66)

(
x1(n)
x2(n)
x3(n)

)
=




(
1 0
k1 1

) (
0
0

)

k2, (k1k2, 1)

(
1 0
k1 1

)




(
y(n− 1)
y(n− 2)
y(n− 3)

)
, (12.67)

(
x1(n)
x2(n)
x3(n)

)
=

(
T2 0

k2, (k1k2,1) T2

)( y(n− 1)
y(n− 2)
y(n− 3)

)
, (12.68)

where

T2 =

(
1 0
k1 1

)
. (12.69)

In a similar manner, we get



x1(n)
x2(n)
x3(n)
x4(n)


 =

(
T3 0

k3, (k3k1, k3k1, 1) T3

)( y(n− 1)
y(n− 2)
y(n− 3)

)
, (12.70)

T3 =

(
T2 0

k3, (k3k1, k3k1, 1) T3

)
. (12.71)

Thus, from equations (12.61)–(12.71) it follows that




x1(n)
x2(n)
x3(n)

...
xm(n)




=

(
Tm−1 0
km−1 Km−1Tm−1

)



y(n− 1)
y(n− 2)
y(n− 3)

...
y(n−m)




, (12.72)

Xm(n) = TmYm(n), (12.73)
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where m = 1, 2, 3, . . .,N ,

Tm=

(
Tm−1 0
km−1 Km−1Tm−1

)
, (12.74)

Km−1 = [km−1k1, km−1k2 . . . km−1km−2, 1]
T
, (12.75)

Xm(n) = [x1(n),x2(n),x3(n), . . . ,xm(n)]T , (12.76)

Ym(n) = [y(n− 1), y(n− 2), . . . , y(n−m)]T . (12.77)

Finally, from equations (12.60), (12.72), and (12.77) we obtain

vN (n) = y(n) + KTXN (n). (12.78)

Next, substituting XN (n), which is given by (12.73)–(12.77) with m = N ,
into (12.78), we obtain

vN (n) = y(n) + KTTNYN , (12.79)

y(n) = vN (n) − KTTNYN , (12.80)

where
K = [k1, k2, k3, . . . , kN ]T . (12.81)

Next, using the delay operator q−1, from Fig. 12.5 and equations (12.77), (12.80),
and (12.81) it follows that

y(n) = s(n) − [k1, k2, . . . , kN ]TN




q−1

q−2

...
q−N


 y(n), (12.82)

where s(n) from Fig. 14.5 is given by

s(n) = [b0, b1, b2, . . . , bM−1]




1
q−1

q−2

...
qM−1



x(n). (12.83)

Finally, substituting equation (12.83) into (12.82), we get

y(n) = B(q−1)x(n) −A(q−1)y(n), (12.84)

where

A(q−1)y(n) = [k1, k2, . . . , kN ]TN




y(n− 1)
y(n− 2)

...
y(n−N)


 (12.85)

and

B(q−1)x(n) = [b0, b1, . . . , bM−1]




x(n)
x(n− 1)
x(n− 2)

...
x(n−M + 1



. (12.86)



288 Ch. 12. IIR Adaptive Filter Algorithms

Several algorithms have been proposed to update the IIR adaptive filters coeffi-
cients vector. Among them the gradient-search-based adaptive algorithm and the
Steiglitz–McBride type IIR adaptive algorithm are two of the most widely used adaptive
algorithms, which are derived under the assumption that the adaptive filter is of strictly
sufficient order, the filter structure is persistently excited, the measurement noise has
bounded variance, it is uncorrelated with the input signal x(n), and, finally, the adaptive
filter is assumed to be stable [3, 9–12]. Next sections describe the adaptive algorithms
used to update the IIR filter coefficients vector.

12.5.1. IIR gradient algorithm. When a gradient search-based-algorithm is used
to update the IIR adaptive filter coefficients vector, the adaptive filter coefficients at time
instant n is given by [9]

ki(n+ 1) = ki(n) + µ e(n)
∂y(n)

∂ki
, (12.87)

bj(n+ 1) = bj(n) + µ e(n)
∂y(n)

∂bj
, (12.88)

where e(n) is the output error and

∂y(n)

∂ki
= αi(n) = −xi(n) − KTTN (n)




αi(n− 1)
ai(n− 2)

...
αi(n−N)


 , (12.89)

∂y(n)

∂bj
= βj(n) = x(n− j) + KTTN (n)




βj(n− 1)
βj(n− 2)

...
βj(n−N)


 , (12.90)

where i = 1, 2, . . .,N ; j = 0, 1, 2, . . .,M − 1; and TN and K are given by equa-
tions (12.74) and (12.81), respectively. A summary of the IIR gradient algorithm is
shown in Table 12.1.

12.5.2. IIR SPSA-based gradient algorithm. The IIR gradient algorithm describe
in Section 12.5.1 is widely used to update the IIR adaptive filter coefficients vectors.
However, the gradient estimation requires a considerable computational effort because
each derivative requires the computation of the output of an all pole lattice structure, as
shown in equations (12.89) and (12.90). To reduce the number of numerical operations
required to compute these equations, the simultaneous perturbation stochastic approach
can be used.

The simultaneous perturbation stochastic approximation (SPSA) [22, 23] is a very
low computational complexity adaptive algorithm that can be used to solve difficult mul-
tivariate optimization problem, such as given by equations (12.87)–(12.90), efficiently.
To this end, firstly, define a perturbation vector Cn, given at time instant n by

Cn = (r1n, r
2
n, . . . , r

N
n , p0n . . . p

M−1
n )T . (12.91)

This vector will be used to estimate the derivatives required by equations (12.87)
and (12.88), where n denotes the time index. Here, the perturbation vector components
rin and pin are random numbers in the interval ([−cmax,−cmin], [cmin, cmax]), with cero
mean and mutually uncorrelated. Next, define the following coefficients vectors [14, 15]:

Kp =
[
k1 + r1n, k2 + r2n, k3, + r3n, . . . , kN + rNn

]T
, (12.92)
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Tab l e 12.1. Cascade lattice IIR adaptive algorithm.

For each input data do

XN (n) = [x1(n),x2(n),x3(n), . . . , xN (n)]T

Km−1 = [km−1, (km−1k1, km−1k2, . . . , km−1km−2, 1)]
T

X(n) = [x(n),x(n− 1),x(n− 2), . . . ,x(n−M − 1)] T

YN (n) = [y(n− 1), y(n− 2), . . . , y(n−N)]T

B = [b0, b2, . . . , bM−1]
T

K = [k1, k2, k3, . . . , kN ] T

Ai(n) = [αi(n− 1), ai(n− 2), . . . ,αi(n−N)] T

Bi(n) = [βi(n− 1),βi(n− 2), . . . , βi(n−M + 1)] T

T2(n) =

(
1 0

k1 1

)

Compute filter output

For m = 3 to N

Tm(n)=

(
Tm−1(n) 0

km−1 Km−1Tm−1(n)

)

XN (n) = TNYN (n)

y(n) = B
T
X(n) − K

T
TNYN (n)

Coefficients update

e(n) = d(n) − y(n)

For i = 1 to N

αi(n) = −xi(n) − K
T
TN (n)A

ki(n+ 1) = ki(n) + µ e(n)αi(n)

For j = 1 to M − 1

βj(n) = x(n− j) + K
T
TN (n)B

bj(n+ 1) = bj(n) + µ e(n)βj(n)

Bp =
[
b0 + p1n, b2 + p2n, . . . , bM−1 + pM−1

n

]T
, (12.93)

and compute the perturbed IIR output signal which, from equation (12.84) is given by

yp(n) = Bp(q
−1)x(n) −Ap(q

−1)y(n), (12.94)

where

Ap(q
−1)x(n) = KT

pTN (n)Y(n), (12.95)

Bp(q
−1)x(n) = BT

p X(n), (12.96)

Y(n) = [y(n− 1), y(n− 2), . . . , y(n−N)]T , (12.97)

X(n) = [x(n),x(n− 1), . . . ,x(n−M + 1)]T , (12.98)

10 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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Tab l e 12.2. Cascade lattice IIR adaptive algorithm using SPSA method.

Define

Cn = (r1n, r
2
n, . . . , r

N
n , p0n . . . pM−1

n )T

B = [b0, b2, . . . , bM−1]
T

K = [k1, k2, k3, . . . , kN ] T

Kp = K + C

Bp = B + C

Km−1 = [km−1, (km−1k1, km−1k2, . . . , km−1km−2, 1)]
T

K
p
m−1 =

[
kp

m−1,
(
kp

m−1k
p
1 , k

p
m−1k

p
2 . . . k

p
m−1k

p
m−2, 1

)] T

X(n) = [x(n),x(n− 1),x(n− 2), . . . ,x(n−M − 1)] T

YN (n) = [y(n− 1), y(n− 2), . . . , y(n−N)]T

T2(n) =

(
1 0

k1 1

)

T2(n) =

(
1 0

kp
1 1

)

Compute filter output

For m = 3 to N

Tm(n)=

(
Tm−1(n) 0

km−1 Km−1Tm−1(n)

)

T
p
m(n)=

(
T

p
m−1(n) 0

kp
m−1 K

p
m−1T

p
m−1(n)

)

y(n) = B
T
X(n) − K

T
TNYN (n)

yp(n) = B
T
p X(n) − K

T
p T

p
NYN (n)

Coefficients update

e(n) = d(n) − y(n)

For i = 1 to N

ki(n+ 1) = ki(n) + µ e(n)
y(n) − yp(n)

ri

For j = 1 to M − 1

bj(n+ 1) = bj(n) + µ e(n)
y(n) − yp(n)

pj

Finally, using the SPSA, the IIR coefficients are updated as follows

ki(n+ 1) = ki(n) + µ e(n)
(y(n) − yp(n))

ri
n

, (12.99)

bj(n+ 1) = bj(n) + µ e(n)
(y(n) − yp(n))

pi
n

. (12.100)

If we compare the number of operations required to compute equations (12.87)–(12.88)
with the number of operations required to compute equations (12.92)–(12.100), we will
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find that the computational complexity of the proposed IIR algorithm using the SPSA is
much lower than that of the conventional IIR gradient algorithm.

12.5.3. Steiglitz–McBride type IIR adaptive filter algorithms. Figure 12.7
shows the IIR output error adaptive structure proposed by Steiglitz and McBride [10].
Based on this structure, several IIR adaptive algorithms have been proposed. Among
them, some of the most successful algorithms use a cascade of FIR transversal filters
and an AR lattice structure to avoid stability problems. Both structures are updated
using an LMS-type adaptive algorithm to minimize the mean square error criterion,
which is given as

ε(n) = E
[
e2(n)

]
, (12.101)

where e(n) is the output error given by [9]

e(n) = A(q−1,n)

(
d(n)

Â(q−1,n− 1)

)
−B(q−1,n)

(
x(n)

Â(q−1,n− 1)

)
, (12.102)

where A(q−1,n) and B(q−1,n) are given by equations (12.85) and (12.33), respectively.
Assuming that A(q−1,n − 1) remain constant, the minimization can be done with
respect to the parameters k1(n), k2(n), . . ., kN (n), b0(n), b1(n), b2(n), . . ., bM−1(n). Thus,
using an LMS type adaptive algorithm, kj(n + 1), j = 1, 2, . . . ,N , and bm(n + 1),
m = 1, 2, . . .,M − 1 are updated as follows:

kj(n+ 1) = kj(n) − µe(n)
∂fN(n)

∂kj
, (12.103)

bj(n+ 1) = bj(n) + µe(n)
∂ya(n)

∂bj
, (12.104)

where m = 0, 1, 2, . . . ,M − 1; j = 1, 2, . . . ,N and e(n) is given by equation (12.102).
To update the filter coefficients using equations (12.101) and (12.102), it is necessary

to compute ya(n) and fN (n). Since these two signals are the result of filtering the input
and reference signals x(n) and d(n) with an all-pass lattice filter of order N , as shown
in Fig. 12.6, from equation (12.80) it follows that

v0(n) = x(n) − KTTN (n− 1)VN , (12.105)

p0(n) = d(n) − KTTN (n− 1)PN , (12.106)

where

VN (n) = [v1(n), v2(n), v3(n), . . . , vN (n)]T , (12.107)

PN (n) = [p1(n), p2(n), p3(n), . . . , pN (n)]T , (12.108)

and, TN (n− 1) and KT are given by equations (12.74) and (12.75), respectively, with
m = N . Subsequently, the signal v0(n) is filtered by FIR transversal filter structure,
whose output signal is given by

ya(n) = BTV(n), (12.109)

where

V(n) = [v0(n), v0(n− 1), . . . , v0(n−N)]T . (12.110)

10*
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Fig. 12.7. Steiglitz–McBride type IIR adaptive filter structure.

To compute fN (n), consider the FIR lattice stage shown in Fig. 12.8. Comparing this
figure with the all-pole lattice shown in Fig. 12.6 and doing manipulations similar to
those described in equations (12.54)–(12.90), we obtain

fN (n) = p0(n) + KTTN (n)P0, (12.111)

where
P0 = [p0(n− 1), p(n− 2) . . . , p0(n−M + 1)]T . (12.112)

Fig. 12.8. FIR Lattice stage.
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Tab l e 12.3. Steiglitz–McBride IIR algorithm.

For each input data do

B = [b0, b2, . . . , bM−1]
T

K = [k1, k2, k3, . . . , kN ] T

Km−1 = [km−1, (km−1k1, km−1k2, . . . , km−1km−2, 1)]
T

X(n) = [x(n),x(n− 1),x(n− 2), . . . ,x(n−M − 1)] T

YN (n) = [y(n− 1), y(n− 2), . . . , y(n−N)]T

VN (n) = [v1(n), v2(n), v3(n), . . . , vN (n)]T

PN (n) = [p1(n), p2(n), p3(n), . . . , pN (n)]T

V(n) = [v0(n), v0(n− 1), . . . , v0(n−N)]T

P0 = [p0(n− 1), p(n− 2) . . . , p0(n−M + 1)]T

Ai(n) = [αi(n− 1), ai(n− 2), . . . ,αi(n−N)] T

T2(n) =

(
1 0

k1 1

)
, T2(n) =

(
1 0

kp
1 1

)

Compute filter output

For m = 3 to N

Tm(n)=

(
Tm−1(n) 0

km−1 Km−1Tm−1(n)

)

v0(n) = x(n) − K
T
TN (n− 1)VN

p0(n) = d(n) − K
T
TN (n− 1)PN

ya(n) = B
T
V(n)

fN (n) = p0(n) + K
T
TN (n)P0

A(n) = −TN(n)P0(n)

Coefficients update

e(n) = fN (n) − ya(n)

K(n+ 1) = K(n) − 2µA(n)

B(n+ 1) = B(n) − 2µV(n)

Next. using equations (12.58) and (12.59), we can estimate the derivative required
to update the filter coefficients, which, since TN (n) and K at the time n do not depend
on the parameters at the time n+ 1, are given by [9]

∂ya(n)

∂bj
= βj(n) = v0(n− j), (12.113)




α1

α2

...
αN


 = −TN(n)




p0(n− 1)
p0(n− 2)

...
p0(n−N)


 . (12.114)
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Thus, finally, the adaptive filter coefficients are updated as follows:

kj(n+ 1) = kj(n) − 2µe(n)
∂fN(n)

∂kj
, (12.115)

bj(n+ 1) = bj(n) − 2µe(n)βj . (12.116)

12.5.4. SPSA based Steiglitz–McBride algorithm. The gradient estimation re-
quired by equations (12.101) and (12.102), especially the first one that involves the
lattice stages, demands a relatively large number of operations. To reduce the computa-
tional complexity of the cascade lattice IIR filter while keeping its desirables properties,
the IIR coefficients vector can be updated using the simultaneous perturbation stochastic
approximation SPSA, in which, firstly, the perturbation vector, Cn, is defined as in
equation (12.91). Next, we estimate the unperturbed output error signal, which from
equations (12.102), (12.108), and (12.110) is given by

e(n) = fN (n) − ya(n), (12.117)

where fN (n) and ya(n) are defined by equations (12.108) and (12.110), respectively.
Next define the perturbed vector Kp and Bp as follows:

Kp =
[
k1 + r1n, k2 + r2n, k3, + r3n, . . . , kN + rNn

]T
, (12.118)

Bp =
[
b0 + p1n, b2 + p2n, . . . , bM−1 + pM−1

n

]T
, (12.119)

and compute the perturbed output error, which is given by

ep(n) = fpN (n) − ypa(n), (12.120)

where the perturbed signal ypa(n) is given by

ypa(n) = BT
pV(n) (12.121)

and V(n) is given by equation (12.107). Now consider the perturbed signal fpN (n),
given by

fpN (n) = p0(n) + KT
pT

p
N (n)P0, (12.122)

where T
p
N (n) is the perturbed matrix, which can be recursively estimated for m = 3, . . .

. . . ,N as follows:

Tp
m(n)=

(
T
p
m−1(n) 0

km−1 + pm−1
n Km−1

p T
p
m−1(n)

)
, (12.123)

Kp =
[
k1 + r1n, k2 + r2n, . . . , km−1 + rm−1

n

]T
. (12.124)

This equation is iteratively estimated with

T
p
2(n) =

(
1 0

k1 + p1n 1

)
. (12.125)

Thus, using equations (12.117) and (12.120), the IIR filter coefficients are updated as
follows:

kj(n+ 1) = kj(n) − 2µe(n)
e(n) − ep(n)

rj
n

, (12.126)

bm(n+ 1) = bm(n) − 2µe(n)
e(n) − ep(n)

pm
n

(12.127)

for j = 1, 2, . . .N and, m = 0, 1,2 . . . ,M − 1, respectively.
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Tab l e 12.4. SPSA based Steiglitz–McBride algorithm.

For each input data do

Cn = (r1n, r
2
n, . . . , r

N
n , p0n . . . pM−1

n )T

B = [b0, b2, . . . , bM−1]
T

K = [k1, k2, k3, . . . , kN ] T

Km−1 = [km−1, (km−1k1, km−1k2, . . . , km−1km−2, 1)]
T

K
p
m−1 =

[
kp

m−1,
(
kp

m−1k
p
1 , k

p
m−1k

p
2 . . . k

p
m−1k

p
m−2, 1

)] T

X(n) = [x(n),x(n− 1),x(n− 2), . . . ,x(n−M − 1)] T

YN (n) = [y(n− 1), y(n− 2), . . . , y(n−N)]T

VN (n) = [v1(n), v2(n), v3(n), . . . , vN (n)]T

PN (n) = [p1(n), p2(n), p3(n), . . . , pN (n)]T

P0 = [p0(n− 1), p(n− 2) . . . , p0(n−M + 1)]T

Kp = K + C

Bp = B + C

T2(n) =


 1 0

k1 1


 , T2(n) =


 1 0

kp
1 1




Compute filter output

For m = 3 to N

Tm(n) =


 Tm−1(n) 0

km−1 Km−1Tm−1(n)




T
p
m(n) =


 T

p
m−1(n) 0

kp
m−1 K

p
m−1T

p
m−1(n)




Unperturbed output error signal

v0(n) = x(n) − K
T
TN (n− 1)VN

p0(n) = d(n) − K
T
TN (n− 1)PN

ya(n) = B
T
V(n)

fN (n) = p0(n) + K
T
TN (n)P0

e(n) = fN (n) − ya(n)

Perturbed output error signal

yp
a(n) = B

T
p V(n)

ep(n) = fp
N (n) − yp

a(n)

Coefficients update, j = 1 to N , m = 0 to M − 1

kj(n+ 1) = kj(n) − 2µe(n) (e(n) − ep(n)) /rj
n

bm(n+ 1) = bm(n) − 2µe(n) (e(n) − ep(n)) /pj
m
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12.6. Simulation Results

The actual performance of the proposed algorithm was evaluated using system
identification configuration, in which the unknown system used is the same as reported
in [1], whose transfer function is given by

H(z) =
−0.097− 1.337z−1 + 1.6z−2

1.0− 1.19z−1 + 0.7z−2
, (12.128)

where the input signal was a white noise sequence. The convergence factor was equal
to 0.001, which minimizes the use of the stabilization mechanism that keeps the poles
inside the unit circle. The variance of the measurement noise was -10.0 dB. The filter
weights are initialized using N uniformly distributed random numbers with zero mean
and unit variance, and the perturbation factors used to update the filter weights are
uniformly distributed random numbers in the interval [–0.01 +0.01] except [–0.001,
0.001], i.e., Cmax = 0.01 and Cmin = 0.001.

Fig. 12.9. Convergence performance of proposed LMS-IIR-SPSA algorithm.

Figure 12.9 shows the convergence performance of the proposed LMS-based IIR
adaptive algorithm using the simultaneous perturbation stochastic approach (SPSA).
The convergence performance of the conventional LMS-based IIR adaptive algorithm is
shown for comparison in Fig. 12.10.

Figures 12.11 and 12.12 show the convergence performance of the proposed
LMS-SPSA-based SM type IIR adaptive algorithm. Fig. 12.13 shows, for comparison,
the convergence performance of the previously proposed algorithm LMS based SM
IIR adaptive algorithm. Simulation results have shown that the proposed algorithm
performs fairly well with a far lower computational complexity than the previously
proposed similar structures. Simulation results show that the proposed algorithms using
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Fig. 12.10. Convergence performance of conventional LMS-IIR-SPSA algorithm.

Fig. 12.11. Tap parameters of proposed SM type algorithm.
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Fig. 12.12. Convergence performance of proposed SM type adaptive algorithm with SPSA.

Fig. 12.13. Convergence performance of conventional SM Cascade type IIR adaptive algorithm.
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the simultaneous perturbation method provide similar convergence performance as the
previously proposed IIR algorithms, with a lower computational complexity.

Conclusions

This chapter presented the development of IIR adaptive filter structures with a trivial
stability test. Firstly, an IIR adaptive filter with a parallel structure based on the output
error method was presented, in which the input signal is orthogonalized using the DCT.
This allows each stage to be independently updated to minimize the total error, using the
Gauss–Newton algorithm. Computer simulations have shown that the orthogonalized
IIR algorithm provides similar convergence performance with much lower computational
complexity.

Two different adaptive algorithms for updating the IIR structure, consisting of
a cascade of transversal and lattice stages whose parameters are updated using the SPSA
method, are also proposed. The first one uses the IIR-LMS approach and the second
one uses the Steiglitz–McBride type IIR adaptive algorithm. The main advantage of the
SPSA-based approaches over the previously proposed LMS-IIR and Steiglitz–McBride
based IIR filter structures is a significant reduction of the computational complexity.
Computer simulations have shown that SPSA-based algorithms provide similar con-
vergence performance as the previously proposed algorithms, but with much lower
computational complexity.
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Chapter 13

ACTIVE NOISE CANCELLING USING THE DISCRETE

COSINE TRANSFORM

This chapter presents a low complexity single-channel Active Noise Cancellation
(ANC) algorithms with system identification and predictive configurations, which are
based on decomposing the filter input signal into a finite number of mutually near
orthogonal signal components in which each signal component can be independently
processed by a FxRLS adaptive algorithm. Computer simulation results show that the
subband decomposition-based ANC structures provide similar convergence performance
to conventional ANC structures with FxRLS adaptive algorithms with much lower
computational complexity.

13.1. Introduction

Acoustic noise problem becomes more and more important as the use of large
industrial equipment, such as engines, blowers, fans, transformers, air conditioners,
motors, etc., increases. Due to its importance, several methods have been proposed
to solve this problem [1, 2], such as enclosures, barriers, silencers, and other passive
techniques that attenuate the undesirable noise [2–4]. There are mainly two types of
passive techniques. The first type uses the concept of impedance change caused by
a combination of baffles and tubes to silence the undesirable sound. These types of
passive techniques, usually called reactive silencers, are commonly used as mufflers in
internal combustion engines.

The second type, called resistive silencers, uses energy loss caused by sound
propagation in a duct lined with sound-absorbing material [1–8]. These silencers
are usually used in ducts for fan noise [1]. Both types of passive silencers have
been successfully used for many years in several applications, however the attenuation
of passive silencers is low when the acoustic wavelength is large compared with
the silencers’ dimension [5]. In an effort to overcome these problems, single- and
multichannel active noise cancellation (ANC), which uses a secondary noise source that
destructively interferes with the unwanted noise, has received considerable attention
during the last several years [1], [5]. In addition, because the characteristics of the
environment, acoustic noise source, as well as the amplitude, phase, and sound velocity
of the undesirable noise are nonstationary, the ANC system must be adaptive in order
to cope with these variations [1, 6].

The most commonly used ANC systems are the single channel ANC systems which
typically use two microphones. The first microphone is used to measure the noise signal
and the second microphone, to measure the attenuated noise or error signal. Both signals
are then used to update the ANC parameters so that error power attains a minimum
(Fig. 13.1) [1, 6]. In this kind of ANC systems, the adaptive filter W(z) estimates the
time varying unknown acoustic path from the reference microphone to the point where
the noise attenuation must be achieved, P (z).

The active noise canceller system is quite similar to the traditional noise canceller
system proposed by Widrow and Stearns [9], because in both cases the purpose of the
adaptive filter is to minimize the power of the residual error so that the filter output
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Fig. 13.1. Single-channel broadband feed forward ANC in a duct.

ŷ(n) becomes the best estimate of the disturbance signal d(n) in the mean square sense.
However, in the active noise canceller system, an acoustic summing point is used instead
of the electrical subtraction of signals. Then, after the primary noise is picked up by
the reference microphone, the adaptive filter will require some time to estimate the
right output of the canceling loudspeaker. Thus, if the electrical delay becomes longer
than the acoustic delay from the reference microphone to the canceling loudspeaker, the
system performance will be substantially degraded, because in this situation, the ANC
impulse response becomes noncausal. However, when the causality condition is met,
the ANC system is able to cancel the broadband random noise [1–6]. Note that, if it
is not possible to meet the causality condition, the system can effectively cancel only
narrowband or periodic noise.

To avoid this problem, it is necessary to compensate the secondary-path transfer
function S(z) from y(n) to ŷ(n) (Fig. 13.2); which includes the digital-to-analog
(D/A) converter, the reconstruction filter, the power amplifier, and the loudspeaker; and
the acoustic path from the loudspeaker to the error microphone; as well as the error
microphone, the preamplifier, the antialiasing filter, and the analog-to-digital (A/D)
converter. A key advantage of this approach is that with a proper model of the plant,
P (z), and the secondary-path, S(z), the ANC system can respond instantaneously to
change in the statistics of the noise signal [1, 6].

Another widely used adaptive structure for active noise cancellation generates inter-
nally its own input signal using the adaptive filter output and the error signals, as shown
in Figs. 13.3 and 13.4. This approach, if the disturbing noise samples are strongly
mutually correlated and the secondary-path S(z) is properly estimated, provides a fairly
good cancellation of the disturbing noise [1, 6, 10]. However, the system performance
will degrade if the correlation between consecutive samples of noise signal weakens,
because in this situation the prediction of the disturbing signal becomes less accurate
[1, 6, 10].

In many cases, the ANC structure with a system identification configuration presents
better cancellation performance than the ANC using a predictive configuration, because
the first one is able to cancel both narrow- and broadband noise. However, in some
situations, the signal produced by the canceling speaker is also captured by the reference
microphone, which leads to ANC system performance degradation [1, 2]. On the other
hand, the ANC with predictive configuration uses only one microphone and therefore it
does not present the feedback problem, making it suitable for applications in which the
position of error and reference microphone is close to each other and the noise to be
cancelled is narrowband.

Most active noise canceller systems use the FxLMS adaptive algorithm or some
variation of it, mainly due to its low computational complexity. However, the con-
vergence of the FxLMS is slow when the input signal autocorrelation matrix presents
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Fig. 13.2. Block diagram of an active noise canceling (ANC) structure with system identification
configuration and a secondary path estimation (SPE) stage.

Fig. 13.3. A single channel ANC system in a duct using a predictive structure.

a large eigenvalue spread. In addition, the FxLMS algorithm is sensitive to additive
noise. These facts may limit the use of the FxLMS adaptive algorithm when high
convergence rates and low sensitivity to additive noise are required [9, 11]. On the other
hand, the FxLMS-Newton adaptive algorithms have the potential to provide a much
higher convergence rate with a much lower sensitivity to additive noise than the FxLMS
algorithm, while its computational complexity is very high. Thus, due to the desirable
properties of the FxLMS-Newton algorithm, several efforts have been carried out to
reduce the computational complexity of LMS-Newton-based algorithms while keeping
its desirables properties.

On the other hand, in real time signal processing, a significant amount of compu-
tational effort can be saved if the input signals are represented in terms of a set of
orthogonal signal components [12, 13]. That is because the system admits processing
schemes in which each signal component can be processed independently. Taking this
fact into account, we propose a parallel form active noise cancellation algorithm using
a single sensor, with system identification and predictive configurations in which the
input signal is split into a set of approximately orthogonal signal components by using
the discrete cosine transform. Subsequently, these signal components are fed into a bank
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Fig. 13.4. Block diagram of an active noise canceling (ANC) algorithm with a predictive structure
and a secondary path estimation (SPE) stage.

of adaptive transversal filters (FIR–ADF) whose parameters are independently updated to
minimize the total error [13–15]. The proposed schemes are attractive alternatives to the
conventional filtered-x recursive least squares transversal algorithms, FxLMS-Newton,
because they reduce the computational complexity of conventional algorithms and keep
similar convergence performance.

13.2. ANC Structures Based on Subband Decomposition Approach

Some of the most widely used active noise canceling structures use either the system
identification or predictive configurations, shown in Figs. 13.2 and 13.4, which differ
from each other only in the way used to derive the input signal. Thus, the filter structure
will be developed without assuming any particular configuration.

Consider the output signal y(n) of an Nth-order transversal filter, given by

y(n) = XT
F (n)HF , (13.1)

where

XF (n) =
[
XT(n),XT(n − M),XT(n − 2M), . . . ,

. . . ,XT (n− (L− 2)M),XT (n− (L− 1)M)
]T

, (13.2)

X(n− kM) = [x(n− kM),x(n− kM − 1), . . . ,

. . . ,x(n− (k + 1)M + 2),x(n− (k + 1)M + 1)]T , (13.3)

is the input vector, and

HF =
[
HT

0 ,H
T
1 ,H

T
2 , . . . ,H

T
L−1

]T
, (13.4)

Hk =
[
hkM ,hkM+1,hkM+2, . . . ,h(k+1)M−1

]T
(13.5)
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is the adaptive filter coefficients vector. Substituting equations (13.2) and (13.4) into
equation (13.1), we obtain

y(n) =
L−1∑

k=0

XT (n− kL)Hk. (13.6)

Next, defining
Hk = CTAk, (13.7)

where C denotes an orthogonal transformation, such as the DFT, DCT, etc., and
substituting equation (13.7) into equation (13.6), we obtain

y(n) =
L−1∑

k=0

(CX(n − kM))T Ak =
L−1∑

k=0

UT (n− kM)Ak, (13.8)

where UT (n− kM) = (CX(n− kM))T and

U(n− kM) = [u0(n− kM),u1(n− kM),u2(n− kM),

u3(n− kM), . . . ,uM−1(n− kM)]T , (13.9)

Ak =
[
ak,1, ak,2,, . . . , ak,(M−1)

]T
. (13.10)

Then, from equations (13.9) and (13.10), y(n) can be represented as

y(n) =
L−1∑

k=0

M−1∑

r=0

ak,rur(n− kM). (13.11)

When U(n− kM) denotes the discrete Fourier transform (DFT) of the input signal,
equation (13.11) defines the output signal of the short delay fast least mean square,
SDFLMS, adaptive filter structure, proposed in [16]. This approach, which is a general-
ization of the conventional FLMS adaptive filter algorithm [16], reduces the processing
delay and increases the convergence rate of conventional FLMS, providing at the same
time perfect reconstruction properties. This structure performs fairly well using block
processing with gradient search based algorithms. However, when RLS type algorithms
are required to increase the convergence rate, the computational complexity can be very
high, even if the coefficients of the input signal transformation be uncorrelated among
them.

To reduce the computational complexity of the proposed structure when a RLS type
adaptation algorithm is used, firstly interchange the summation order as follows:

y(n) =
M−1∑

r=0

L−1∑

k=0

ak,rur(n− kM) (13.12)

and define

Vr(n) = [ur(n),ur(n−M),ur(n− 2M),

ur(n− 3M), . . . , ur(n− (L− 2)M),ur(n− (L− 1)M)]T , (13.13)

Wr =
[
a0,r, a1,r, a2,r, . . . , a(L−1),r

]T
, (13.14)
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so that equation (13.12) takes the form

y(n) =
M−1∑

r=0

WT
r Vr(n). (13.15)

Equation (13.15) denotes the output signal of the subband decomposition based filter
structure proposed in [11], which also has perfect reconstruction properties without
regarding the statistics of the input signal or the adaptive filter order. Figure 13.5 shows
that the realizations forms given by equations (13.11) and (13.15) are equivalent.

Fig. 13.5. Equivalence between the realization form of SDFLMS [15] and the subband decompo-
sition based ADF [11].

13.2.1. Adaptation algorithm. Consider the output error which, from equa-
tions (13.15) and Figs. 13.2 and 13.4, is given by

e(n) = d(n) −
(
M−1∑

r=0

WT
r Vr(n)

)
∗ s(n), (13.16)

e(n) = d(n) −
(
M−1∑

r=0

WT
r V̂r(n)

)
, (13.17)

where Wr is given by equation (13.14), and

V̂r(n) = [v̂r(n), v̂r(n−M), . . . , v̂r(n− (L− 1)M)]T , (13.18)

v̂r(n) = sr(n) ∗ ur(n), (13.19)

where ur(n) is the orthogonal transformation of the input signal and ∗ denotes the
convolution.
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The performance of the proposed ANC structure strongly depends on the choice of
the orthogonal transformation, because in the development of adaptive algorithm it is
assumed that the transformation components are fully uncorrelated. Several orthogonal
transformations that approximately satisfy this requirement could be used, such as the
discrete cosine transform (DCT), the discrete Fourier transform (DFT), the discrete
sine transform (DST), the Walsh–Hadamard transform, etc. Among them, the DCT
appears to be an attractive alternative because it is a real transformation and has better
orthogonalizing properties than other orthogonal transformations. Besides, it can be
estimated in a recursive form by using a filter bank whose rth output signal is given by
[12, 14, 20]

ur(n) = 2 cos
(
πr

M

)
ur(n− 1) − ur(n− 2)−

− cos
(
πr

2M

)
{x(n−M − 1) − (−1)rx(n− 1)

−x(n−M) + (−1)rx(n)} . (13.20)

To achieve high convergence rates, the coefficients vector Wr, r = 0, 1, 2, . . . ,M − 1,
will be estimated so that the sum of squared errors, ε(n), given as

ε(n) =
n∑

k=1

(
d(k) −

M−1∑

r=0

WT
r V̂r(k)

)2

, (13.21)

ε(n) =
n∑

k=1

(
d(k) − WT V̂(k)

)2
, (13.22)

attains a minimum, where

W =
[
WT

1 ,W
T
2 ,W

T
3 , . . . ,W

T
L−1

]T
, (13.23)

V̂(n) =
[
VT

0 (n), V̂T
1 (n), V̂T

2 (n), . . . , V̂T
M−1

]T
, (13.24)

and vectors Vr and Wr(n) are given by equations. (13.13) and (13.14), respectively.

Multiplying equation (13.22) on the left by V̂(n) and using the orthogonality
property of the least square estimation, we obtain

[
n∑

k=1

V̂(k)V̂T (k)

]
W(n) =

n∑

k=1

d(k)V̂(k). (13.25)

Next, assuming that the DCT coefficients of the input signal are fully mutually
uncorrelated [14, 15, 18], we can write equation (13.25) as

[
n∑

k=1

V̂r(k)V̂
T
r (k)

]
Wr(n) =

n∑

k=1

d(k)V̂r(k), (13.26)

Wr(n) =

[
n∑

k=1

V̂r(k)V̂
T
r (k)

]−1 n∑

k=1

d(k)V̂r(k), (13.27)

where r = 0, 1, 2, 3, . . .,M − 1. Equation (13.27) is the solution of the Wiener–Hopf
equation, which can be solved recursively by using the Matrix Inversion Lemma as
follows:

Wr(n+ 1) = Wr(n) + µKr(n)e(n); (13.28)
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where e(n) is the output error given by equation (13.17); µ is the convergence factor,
which controls the stability and convergence rate [16, 21];

Kr(n) =
Pr(n)V̂r(n)

λ+ V̂
T
r (n)Pr(n)V̂r(n)

; (13.29)

Pr(n+ 1) =
1

λ

[
Pr(n) − Kr(n)V̂T

r (n)Pr(n)
]
; (13.30)

and V̂r(n) is given by equation (13.19). Taking into account [16] that

Kr(n) = Pr(n)V̂r(n), (13.31)

we can write equation (13.29) in the form

Wr(n) = Wr(n− 1) + µPr(n+ 1)e(n)V̂r(n). (13.32)

Equation (13.32), when µ < 1, is the so-called LMS-Newton algorithm, which converges
to the optimal solution when 0 < µ < 1. A detailed analysis of the LMS-Newton
algorithm is given in [21]. The proposed parallel form ANC system is shown in Figs.
13.6 and 13.7.

Fig. 13.6. Proposed active noise canceller structure using subband decomposition method.

The proposed adaptive structure can be used in active noise canceller structures
using either system identification or predictive configurations. In the first case, the input
signal is picked up by the reference microphone, while, when a predictive configuration
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Fig. 13.7. rth stage of proposed ANC structure.

is used, the input signal is estimated from the output error and the adaptive filter output
signal.

13.2.2. Secondary path estimation. A widely used secondary path estimation
method uses an adaptive filter in parallel with the secondary path feed with an internally
generated white noise sequence, which is also added to the noise canceller output signal
y(n) to drive the secondary path and generate in this way the reference signal, such that
the output error is given by

f(n) = s(n) ∗ b(n) + s(n) ∗ y(n) − d(n) − ye(n), (13.33)

where

ye(n) =
L−1∑

r=0

ŜTr Br(n) (13.34)

and ∗ denotes the convolution. Next, assuming that v(n) is uncorrelated with y(n), the
term

u(n) = s(n) ∗ y(n) − d(n) (13.35)

in equation (13.33) denotes the additive noise, where s(n)*b(n) is the reference signal.
Then, because the adaptive filter is operating in a system identification configuration,
the adaptive filter coefficients vector will converge to the optimum solution even in the
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Fig. 13.8. Secondary path estimation using an internally generated white noise sequence b(n).

presence of u(n), when the LMS-Newton algorithm is used [21]:

Ŝr(n) = Ŝr(n− 1) + µGr(n)f(n), (13.36)

where f(n) is the output error given by equation (13.33),

Gr(n) =
Qr(n− 1)Br(n)

λ+ B
T
r (n)Qr(n− 1)Br(n)

, (13.37)

Qr(n) =
1

λ

[
Qr(n − 1) − Gr(n)BT

r (n)Qr(n − 1)
]
, (13.38)

Br(n) = [br(n), br(n− L), . . . , br(n− (L− 1)M)]T , (13.39)

br(n) = 2 cos
(
πr

M

)
br(n− 1, r) − br(n− 2, r)+

+ [x(n) − x(n− 1) − (−1)rx(n−M) + x(n−M − 1)] , (13.40)

N is the filter order, M is the number of subfilters, and L is the number of subfilters’
coefficients. The convergence properties of equation (13.36) are the same as those of
equations (13.28) and (13.32).
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When an offline estimation is used, d(n) and y(n) are equal to zero and, therefore, the
adaptive filter operates in a system identification configuration in near ideal conditions.
Then Sr will converge to the optimal solution of the Wiener–Hopf equation.

13.2.3. Computational complexity. The proposed structure requires 2LM mul-
tiplication and 5LM additions for the DCT estimation, and LM multiplication and
LM + M additions to compute the filter output. Next, for adaptation, each stage
requires Ls multiplications and Ls additions to estimate the secondary-path output
signals, where Ls is the r-th secondary-path stage order. L2 + L multiplications and
L2 + L+ 1 additions are required for the Kalman gain estimation. The estimation of the
inverse autocorrelation matrix requires 3L2 multiplication and 2L2 additions. Finally,
for updating vectors coefficients L multiplication and L additions are required. Thus,
because the proposed structure consists of M stages for filtering and update, it requires
7L2M + 12LM + (Ls + 2)M floating-point operations. This, computational complexity
is far lower than the 8(LM)2 + 8(LM) + 1 floating-point operations required by the
conventional FIR structure. Figure 13.9 shows a comparison of the number of floating
point operations required by the proposed and conventional FxLMS-Newton algorithms,
respectively. From this figure it is clear that the proposed algorithms require far fewer
operations per sample period than the conventional algorithm, especially for a large filter
order. In all cases L was fixed to 4.

Fig. 13.9. Computational complexity of proposed ANC.

13.3. Computer Simulations

The cancellation performance of the proposed ANC algorithms was evaluated by
computer simulations in which the proposed and conventional algorithms with both
system identification and predictive configurations were required to cancel the actual
airplane, bell, motor, and bike noise signals, whose correlation sequences, estimated
from the input data, are shown in Figs. 13.10–13.12. In all cases, the secondary
path impulse response s(n) was estimated off-line using a subband decomposition based
adaptive filter structure using the LMS-Newton algorithm described in Section 13.2.2.
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In all cases both the noise, P (z), and secondary, S(z), paths are shown in Figs. 13.2
and 13.3, which were simulated using FIR filters of order 20 with impulse responses
given by

p(n) = exp(−kn)r(n), n = 0, 1, 2, . . . ,N , (13.41)

where N is the filter order, n is the time index, k is a constant such that exp(−kN) =
= 0.01, and r(n) is a uniformly distributed random sequence with a zero mean and
a unit variance.

Fig. 13.10. Autocorrelation sequences of airplane signals.

Fig. 13.11. Autocorrelation sequences of bells signals.
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Fig. 13.12. Autocorrelation sequences of a motor and a bike signals.

Fig. 13.13. Convergence performance of proposed and conventional algorithm when they are
required to cancel an actual airplane noise signal.

13.3.1. ANC algorithm with system identification configuration. Figures
13.13–13.15 show the cancellation performance of the proposed and conventional ANC
algorithms, operating with a system identification configuration, when required to cancel
three actual noises produced by an airplane, a bell, and a motor, respectively. In all
cases, the sparse filters order was equal to 4 and the overall filter order equal to 20.
Figures 13.13–13.15 show that the proposed scheme provides quite similar performance
to conventional ANC algorithm with much less computational complexity. In all cases,
the forgetting factor λ is equal to 0.99 and the convergence factor µ is equal to 0.1.
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Fig. 13.14. Convergence performance of proposed and conventional algorithms when they are
required to cancel an actual bell noise signal.

Fig. 13.15. Convergence performance of proposed and conventional algorithm when they are
required to cancel an actual motor noise signal.

13.3.2. ANC algorithms with predictive configuration. Figures 13.16–13.18
show the cancellation performance of the proposed ANC with predictive configuration
when it is required to cancel actual airplane noise signals whose autocorrelation se-
quences are shown in Fig. 13.10. These figures show that a fairly good cancellation
performance is achieved because, as shown in Fig. 13.10, the airplane signals present
a strong correlation between their samples.

Figures 13.19 and 13.20 show the convergence performance of the proposed ANC
structure when it is required to cancel two actual bell signals whose correlation



13.3. Computer Simulations 315

Fig. 13.16. Convergence performance of proposed, __, and conventional, − − ∗ − −, ANC
algorithms with a predictive configuration. The noise signal was the airplane noise signal,

airplane_1. The time variations of noise power (−− • −−) is shown for comparison.

Fig. 13.17. Convergence performance of proposed, _____, and conventional −− ∗ − −algorithms
with a predictive configuration. The noise signal was the airplane noise signal, airplane_2. The

time variations of noise power, −− • − −, is shown for comparison.

sequences are shown in Fig. 13.11. These figures show that a fairly good cancellation
is achieved, because the bell signals present a strong correlation among their samples,
enabling an accurate prediction.

Finally, Figs. 13.21 and 13.22 show the performance of the proposed algorithm
when it is required to cancel actual motor and bike noise signals, whose autocorrelation
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Fig. 13.18. Convergence performance of proposed, _____, and conventional − − ∗ − −ANC
algorithms with a predictive configuration. The noise signal was the airplane noise, airplane_3.

The time variations of noise power, −− • − −, is shown for comparison.

Fig. 13.19. Convergence performance of proposed, _____, and conventional, −− ∗−−, algorithms
with a predictive configuration. The noise signal is a bell noise signal, bell_1. The time variations

of noise power, −− • −−, is shown for comparison.

sequences are shown in Fig. 13.12, respectively. These figures show that a fairly good
cancellation is achieved in the case of a motor signal, because its samples are strongly
mutually correlated. However, in the case of a bike signal, the cancellation achieved
is poor, since, in this case, the noise signal presents a week correlation between its
samples. In all cases, the convergence performance of the conventional FxLMS-Newton
algorithm is also shown for comparison.
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Fig. 13.20. Convergence performance of proposed, _____, and conventional, −− ∗−−, algorithms
with a predictive configuration. The noise signal is a bell noise signal, bell_2. The time variations

of noise power, −− • −−, is shown for comparison.

Fig. 13.21. Convergence performance of proposed, _____, and conventional, −− ∗−−,algorithms
with a predictive configuration. The noise signal is an actual motor noise signal. The time

variations of noise power, −− • − −, is shown for comparison.

Conclusions

This chapter has proposed active noise cancellation algorithms based on a subband
decomposition approach, with system identification and predictive configurations in
which the input signals are split into M near orthogonal signal components using the
discrete cosine transform. Subsequently, a sparse FIR adaptive filter is inserted in
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Fig. 13.22. Convergence performance of proposed, _____, and conventional, −− ∗−−, algorithms
with a predictive configuration. The noise signal is an actual bike noise signal. The time variations

of noise power,−− • −−, is shown for comparison.

each subband, whose coefficients are independently updated using the FxLMS-Newton
algorithm. The proposed algorithms with system identification and predictive config-
urations were evaluated using different kinds of actual noise signals. In all cases,
simulation results show that the proposed approaches allow a significant reduction of the
computational of the adaptive FxLMS-Newton algorithms, while keeping convergence
performance nearly the same as that of the conventional ones. Simulation results also
show that the ANC with system identification configuration can properly handle signals
with strong correlation as well as with a week correlation between their samples. On
the other hand, using an ANC with predictive configuration, one can achieve a fairly
good cancellation level if the samples of noise signals are strongly correlated among
them, as it happens with the airplanes, bells, and motor signals, as shown in Figs.
13.17–13.21. However, when the samples of input signal are weakly correlated between
them, the cancellation level is smaller, as shown in Fig. 13.22. The reason is that, as
the correlation among consecutive samples of noise signal becomes stronger, the ANC
system may estimate the noise signal with a higher accuracy, achieving in this way a
better cancellation performance.
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Chapter 14

ADAPTIVE EQUALIZERS

Since the bit rate increased in most digital communication systems, the requirement
of better algorithms for inter-symbol interference reduction has also increased. To solve
this problem, several efficient equalizer algorithms have been proposed in the last several
years; some of them are presented in this chapter.

14.1. Introduction

The development of the communications and computer technology has lead to a
widespread use of high-speed wire and wireless data communications. This became pos-
sible due to the development of efficient adaptive systems capable to reduce intersymbol
interference, enabling, in the case of using the telephone channel, the development of
the xDLS communication systems.

In the case of the xDLS systems, generally, the telephone communication channel is
nearly stationary and presents low distortion. Then the main problem is the interference
introduced in the receiver by its own transmitter or by other transmitters operating
in the same wideband communications channel. To reduce the interference in xDLS
systems, adaptive equalizers can be used along with cross-talk interference cancellers,
which presents a structure similar to that of an echo canceller.

The wireless data communication systems do not present transmitter interference,
however the channel distortion is significant. To compensate the severe distortion intro-
duced by the rapid time-varying mobile communication channels, adaptive algorithms
with high convergence rates are required to update the DFE coefficients. The LMS
adaptive algorithm, widely used in several adaptive filter practical applications, has a very
low computational complexity, providing fairly good performance in stationary and slow
time-varying communication channels [15]. However, its low convergence rate limits
its ability to track rapid time-varying fading multipath channels often found in mobile
communications systems [15, 16]. On the other hand, the RLS adaptive algorithm has
a much higher convergence rate than that of the LMS algorithm and low sensitivity
to the additive noise, although its computational complexity is much higher than that
of the LMS algorithm [1, 15, 16]. However, because of its ability to track relatively
fast time-varying communication channels, the RLS algorithm with different memory
length is often used to update the adaptive DFE coefficients vector [15]; besides, several
algorithms have been proposed to reduce the RLS computational complexity, such as
the fast Kalman algorithm [15, 17], which reduce the computational complexity of the
adaptive algorithm from O(N2) to O(N). This represents a considerable reduction of the
computational complexity. However, this algorithm and another of this type that have
been proposed in the last few years may become numerically unstable [1, 15, 17]. Thus,
the high computational complexity of the RLS algorithm and the numerical instability of
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its low computational complexity modifications still present several problems when used
in land mobile communication systems, such as cellular telephone systems.

Wireless radio communications networks need to increase the number of users
allowed in the system. As a consequence, modulation and multiple access techniques
designed specifically for wireless channels will play an important role in achieving
this goal. For mobile communication systems, diversity reception is essential to
reduce the effects of fading radio channels. Direct-sequence code division multiple
access (DS-CDMA) is a multiplexing technique where several independent users share
a common channel by modulating preassigned signature waveforms. The receiver then
observes the sum of the transmitted signals over an additive white Gaussian noise
(AWGN) channel.

The major limitation on the performance and channel capacity of the DS-CDMA
system is the multiple-access interference (MAI) due to simultaneous transmissions.
The conventional matched filter (MF) detector cannot suppress MAI effectively, and it
suffers from the near–far problem. Since CDMA is not fundamentally MAI limited,
multiuser detection (MUD) techniques can substantially improve the performance of a
CDMA system. The optimal multiuser detector is, essentially, a maximum-likelihood
(ML) sequence detector. However, because it has a prohibitive complexity, many other
multiuser detectors with relatively low complexity, such as the decision feedback detec-
tor, parallel interference canceller, and linear multiuser detectors, have been developed.
All of them provide suboptimal solutions, such as the linear decorrelator, which removes
all cross-correlations between active users, eliminating in such way the MAI at the price
of enhancing the additive noise [2].

Recently, blind adaptive multi-user detection has received special attention and
several blind adaptive detectors have been proposed [1–3]. The main motivation for
employing a blind detector is to avoid the necessity to have a training sequence,
which is commonly required in most adaptive multi-user detectors proposed previously.
Blind detection avoids the requirements for a reference signal, and, under appropriate
initial conditions, its performance is not considerably degraded as compared to detectors
requiring a training sequence. In this sense, the constant modulus algorithm (CMA)
has been widely applied to cancel intersymbol interference (ISI) for digital transmission
through band-limited channels. So, based on the combined channel and equalizer
parameter space, a finite-length tap filter with CMA tap updates will be able to converge
closely to the global minimum.

This chapter presents interference cancellation systems to be used in wire as well as
data communication systems using digital, analog, fuzzy, and blind detection approaches.

Fig. 14.1. A three-ray Rayleigh fading model of a mobile communication channel.

11 V. F. Kravchenko, H.M. Perez-Meana, V. I. Ponomaryov
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14.2. Channel Model for Land Mobile Communication

A realistic evaluation of any equalizer method strongly depends on the model of
communication channel used [39, 41–43]. Therefore, considerable research has been
carried out to properly model mobile communication channels. As a result of this
intensive research, several models have been reported in literature. Among them, one of
the most widely used is the Three-Ray Rayleigh Fading Model, given as follows:

h(t) = θ0 exp(jϕ0)δ(t) + (θ1 + ρ)δ(t− T ) + θ2 exp(jϕ2)δ(t− 2T ), (14.1)

where θk (k = 0, 1, 2) are independent and Rayleigh-distributed random numbers, ϕk
(k = 0, 2) are independent and uniformly distributed random numbers, and ρ is a deter-
ministic component.

Experiments carried out to validate the above model show that, in an urban area,
the received signal usually consists of multipath components which can be thought of as
being independently traveling plane waves whose phases, amplitudes, incoming angles,
and time delays are random variables [40]. Thus, the mobile communication channel
can be assumed as a random process that is the result of two overlapping stationary
random processes. One of them, termed the shadowing random process, is related to
the large-scale fluctuations, e.g., in urban area, to the density and average height of
buildings or the width of streets. It can be assumed to be stationary over several
hundreds of meters [40]. The second is the short-term random process that is mainly
related to the motion of the mobile station and is responsible for the fluctuations of the
propagation channel within fractions of wavelengths. The short-term random process
can be assumed to have statistics of the Rayleigh type and be stationary over 4–5 m in
the 900-MHz frequency band [40]. In a suburban or rural area mobile communication
channels can be simulated by adding a deterministic component to the impulse response
of the mobile communication channel urban area described above [39, 41–43]. Such
a deterministic component stands for the main path characterized by a power ρ relative
to the random component [40]. For low values of ρ, i.e., near 0 dB, random contribution
prevails [39, 41–43], which results in the Rayleigh distribution for the channel. However,
even a moderate increase of ρ (5 ∼ 10 dB) causes noticeable changes in both the statistic
and dynamic properties of the communications channel transfer function [35]. On the
basis of these qualitative interpretations of some experimental results, the following
classification can be drawn [39, 41–43]:

(a) Urban center with building density > 30%,

ρ≪ 0 (dB). Only multipath component.

(b) Urban area with a building density of 20%–30%

0 < ρ < 4 dB.

(c) Urban area with a building density of 10%–20%

4 < ρ < 6 dB.

(d) Suburban area
6 < ρ < 10 dB.

(e) Open rural area
ρ > 10 dB.

Figures 14.2–14.4 show the frequency responce of some typical commnicacion
channels. In Fig. 14.2 the frequency response of a high-qualtiy telephone channel is
shown. Figure 14.3 shows the frequency response of a three rays communication channel
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Fig. 14.2. Frequency response of a high-quality telephone channel.

Fig. 14.3. Frequency response of a communication channel often found in mobile communications,
with large spectral distortion.

(Fig. 14.1) and, finally, in Fig. 14.4 the frequency response of a five rays communicacion
channels is shown.

14.3. Interference Cancellation in Wire Data Communication
Systems

Figure 14.5 shows a block diagram of a typical data communications channel operat-
ing in a wire-based communications system. As shown in this figure, the connection of
the transmitter and receiver in the local station, the 2–to–4 wires conversion, is carried

11*
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Fig. 14.4. Frequency response of a communication channel often found in mobile communications,
with large spectral nulls.

Fig. 14.5. Adaptive Echo Cancellation Model, where T1,R1 are the Transmitter and Receiver at
the subscriber side and T2,R2 are the Transmitter and Receiver at the service provider side. EC

is an Adaptive Echo Canceller and H is the Hybrid circuit.

out using a hybrid circuit. However, because the hybrid circuit is not perfectly balanced,
a significant amount of transmitted signal arrives to the receiver, producing a significant
distortion, which must be reduced along with the intersymbol interference due to the
non-ideal communication channel characteristics. In order to solve this problem, three
different structures can be used: the intersymbol interference predicted decision feedback
equalizer, ISI-DFE, the noise predicted decision feedback equalizer, NP-DFE, and the
hybrid decision feedback equalizer, H-DFE. In all cases the canceller and the equalizer
can be adapted independently, as described in Section 14.2.1, or jointly, as shown in
Section 14.2.2.

14.3.1. Independently Updated Canceller and Equalizer Structures. To reduce
the interference introduced by the reflected signal from the transmitted to the receiver or
even speech signal if the data communication system share the channel with a telephone
one, three different equalizer structures have been proposed: the ISI-DFE, the NP-DFE,
and the H-DFE, which are shown in Figs. 14.6–14.8. The first approach is the ISI-DFE,
which is commonly known as DFE (Fig. 14.6). Here, the detected data are inserted
into the feedback section to improve the DFE performance. In situations when a colored
noise is the main distortion source, the NP-DFE, shown in Fig. 14.7, is a suitable
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choice. Here, a linear predictor, intended to reduce the colored noise, is inserted after
a feedforward equalizer. This structure performs fairly well if the interference noise
is strongly correlated. Finally, the H-DFE approach, shown in Fig. 14.8, combines
the desirable properties of both structures. In all the additive, interference is reduced
by placing the canceller before the equalization process, adapting independently both of
them.

Fig. 14.6. ISI-DFE with adaptive echo cancellation approach.

Fig. 14.7. NP-DFE with adaptive echo cancellation approach.

14.3.2. Jointly Updated Canceller and Equalizer Structures. The second ap-
proach consists in jointly updating the canceller and equalizer using a common error, as
shown in Figs. 14.9–14.11.
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Fig. 14.8. H-DFE with Adaptive Echo Cancellation approach.

Fig. 14.9. ISI-DFE with adaptive echo Cancellation model using a common error.

Figures 14.12 and 14.13 show the performance of equalizers updated using separated
and common errors, respectively when the used channel presents severe intersymbol
interference.

14.4. Analog Equalizer Structure

Recently, neural-network based adaptive equalizers have been proposed, which have
the ability to track fast variations on the communication channels impulse response
[23–25]. However, although they are reported to perform fairly well in many practical
situations, their computational complexity in some cases is much higher than that
of conventional DFE using the RLS algorithm [23–25]. This may limit their use in
some practical applications. On the other hand, the interest in adaptive analog systems
has grown in last few years, because they have the potential to handle much higher
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Fig. 14.10. NP-DFE with adaptive echo cancellation model using a common error.

Fig. 14.11. H-DFE with adaptive echo cancellation model using a common error.

frequencies with a smaller implementation size and lower power requirements than their
digital counterparts [18, 19, 26, 27].

This section describes an analog sampled data recursive least square (RLS) adaptive
DFE structure that extends previous proposed structure [19] for handling complex valued
input signals in which the DFE coefficients vector is updated by using a continuous time
modified Hopfield Network [21, 27–31]. In the equalizer structure M time delays are
inserted between consecutive coefficients to provide faster convergence rates and lower
misadjustment, while keeping the same number of coefficients. This fact increases the
convergence rate and reduces the misadjustment of adaptive algorithm by the factor M .
Thus, the equalizer structure has, potentially, a much smaller implementation size, lower
power requirement, much higher convergence rates, and better tracking ability than its
digital counterparts. Computer simulations are given to show that the analog structure
has very similar performance than the conventional DFE with RLS adaptation algorithm
in the stationary or slowly time varying channel. However, it performs much better than
the conventional DFE in rapidly time varying communication channels.
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Fig. 14.12. Bit Error Rate (BER) Performance with the canceller and equalizer updated using
different errors.

Fig. 14.13. Bit Error Rate (BER) Performance with the canceller and equalizer updated using
a common error.

Consider the continuous time decision feedback equalizer (DFE) structure shown in
Fig. 14 (a), with the output signal y(t) given by

y(t) =
N−1∑

k=0

wkxk(t), (14.2)
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where xk(t) is given by

xk(t) = ck (xr(t− nMT ) + xi(t− nMT )) . (14.3)

In (14.3), ck is the attenuation introduced by the k-th delay stage and wk is the k-
th expansion coefficient, which is estimated so that the output error energy attains
a minimum, where

e(t) = d(t) − y(t) (14.4)

is the output error and d(t) is the reference signal, which is a known symbol during the
training period and the detected symbols during the operation period. From equations
(14.2) and (14.4) it follows that the output error energy is given by

t∫

0

∣∣∣∣∣d(τ ) −
N−1∑

k=0

wkxk(τ )

∣∣∣∣∣

2

dτ. (14.5)

Next, using the orthogonality principle in least-square estimation, after some modifica-
tions, we obtain the optimal coefficients vector in the form [1]

W = Φ−1
xxΦxd, (14.6)

where W is the coefficients vector whose k-th element is wk, Φxd is the correlation
vector between the all-pass sections output signals and the reference whose k-th element
is given by

ϕxd(k) =

t∫

0

d(τ )x∗k(t)dτ , (14.7)

where ∗ denotes the complex conjugation, and Φgx is the correlation matrix between
the all-pass sections output signals whose (j, k)−th element is given by:

ϕxx(j, k) =

t∫

0

xj(τ )x
∗
k(t)dτ. (14.8)

In order to derive an adaptive algorithm for on-line estimation of the coefficients vector
W, consider a continuous time Hopfield neural network shown in Fig. 14.14(b), whose
output signal is given by [21, 27, 6, 28, 30]

d

dt
wk(t) =

1

RC
wk(t) +

N−1∑

m=0

pm,kwm(t) + bk,

k = 0, 1, 2, . . . ,N − 1,

(14.9)

where wk(t) is the k-th node complex-valued output signal, R and C are real positive
constants, pm,k is the connection weight of the path going from the m-th node to the
k-th one and bk is a real constant. Taking the Laplace transform of (87), we obtain

sW(s) +
1

RC
W(s) +

1

C
PW (s) =

1

C
B. (14.10)

Next, using the Final Value Theorem, we may conclude that, in a sufficiently long time
interval, the output vector of the modified Hopfield Network takes the form [18, 27, 28]

W(∞) = [I− RP]−1RB. (14.11)
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Fig. 14.14. Analog sampled data decision feedback equalizer based on a modified Hopfield network,
(b) k-th node of a modified complex valued Hopfield network used for updating the proposed DFE

coefficients vector. (c) Implementation of a complex multiplier.
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Consider now the adaptive filter optimal coefficient vector, which is given by equa-
tion (14.11), and assume that

P =
I − Φxx

R
(14.12)

and
B =

Φxd

R
. (14.13)

As follows from equations (14.10)–(14.13), after convergence, the Hopfield Neural
Network provides the optimal solution to the Wiener–Hopf equation and then can be
used for estimating the optimal coefficients vector of an analog time adaptive filter
structure [19, 27, 28].

The adaptive algorithm is a recursive implementation of equation (14.6). Then, the
same convergence characteristics as for the standard RLS algorithm [1], when both
operate under the same conditions, can be expected. Hence, the misadjustment produced
by both algorithms due to the weight vector noise is approximately given by

Ma = (1− γ)N/(1 + γ), (14.14)

where γ is the forgetting factor and N is the number of equalizer coefficients. On the
other hand, the variation of the power error with time is given by [1]

K(n) = σ2/(nλmin). (14.15)

Here, assuming that the systems memory in seconds remain constant if the sampling
period is reduced by M , equations (14.14) and (14.15) take the form

Ma =
(1− γ)N

2M + γ + 1
(14.16)

and
K(n) = σ2/(nMλmin). (14.17)

Hence, the analog DFE structure provides lower misadjustment with better tracking
ability than the standard RLS adaptive algorithm.

14.4.1. Computer Simulation. In this section, we apply the modeling ideas
described in the previous section to a simulated mobile radio channel with three
propagation paths (L = 3), where the time behavior of the fading channel is characterized
by half the Doppler spread. That is, the variation rate of the multipath channel is given
by [43]

fD = fc
V

C
, (14.18)

where fc is the carrier frequency, V is the mobile speed and C is the speed of light.
The simulation results presented in this section are not intended to be a complete
computer simulation study of the proposed DFE structure, but offer an illustration of
its applicability and performance. Here, each time-varying communication channel is
a linear combination of three paths (one direct path and two reflectors) as shown in
Fig. 14.1, that is [19, 40, 43]

h(k, t) = θrfr(k), r = 0, 1,2, (14.19)

where

f1(k) = 1.0, (14.20)

f0(k) = exp
(
j2πk

M1

)
, (14.21)
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and
f2(k) = exp

(
j2πk

M2

)
, (14.22)

where, for a rapid time-varying channel, M1 and M2 are assumed to be 120 and 200,
respectively, and θ0 = 0.5, θ1 = 1, and θ2 = 0.5. These numbers are rather realistic for
a carrier frequency of 900 MHz bit rate of 20 Kb/s and vehicle speed of 100 km/h. The
input was a 4-QAM symbol series filtered through the channel and corrupted with white
Gaussian noise (Additive white Gaussian noise AWGN). No error-correcting code was
used. The burst structure of the transmitted signal consists of 2 training data and 6
information data. To evaluate the performance of the proposed DFE structure shown in
Fig. 14.14 by computer simulation, the sampling rate was assumed to be 10 times faster
than the symbol rate. Thus, the number of delay sections inserted between consecutive
DFE coefficients was 10. To simulate the non-ideal characteristics of the delay line.
a loss of about 0.01 dB was added between consecutive filter taps. The modified Hopfield
network was simulated by solving equation (14.9) as follows:

wk(nT ) = exp
(
−
(

1

RC
+ pkk

)
nT
)
×
[

N−1∑

m=0,m 6=k

pkmwm(nT ) + bk

]
, (14.23)

where ∗ denotes the convolution and T, the symbol rate, is assumed equal to 1.0. Finally,
the integrators required to estimate the autocorrelation and cross correlation functions
were replaced by low-pass filters with appropriate cutoff frequencies. The additive noise
was a white noise sequence.

Three different cases were considered for evaluation by computer simulation, namely:
stationary communication channels, slow time-varying communication channels, and
rapid time-varying communication channels.

Case 1: Stationary Communication Channel.
The performance of the proposed structure was evaluated using three different

stationary channels whose power spectrum densities are shown in Figs.14.2–14.4,
respectively. The equivalent communication channel shown in Fig. 14.2 (channel 1) is
a high-quality typical telephone channel, which is relatively easily compensated by the
adaptive DFE [1, 22]. In contrast, the equivalent communication channels 2 (Fig. 14.3)
and 3 (Fig. 14.4) have deep spectral nulls, which cause serious information distortion.
The spectral characteristics of the equivalent channels shown in Figs. 14.3 and 14.4,
often found in multi-path fading mobile communication channels, cause serious distortion
of the transmitted signals [1]. Figure 14.15 shows that the bit error rate (BER) of the
proposed DFE structure and the conventional DFE structure using the RLS algorithm
[23], when required to equalize the three communication channels mentioned above. The
forgetting factor [1] of the RLS algorithm is equal to 0.99 and the modified Hopfield
Network is considered to have converged when εi <0.001 (i = 0, 1, . . .N), where εi is
the difference between two consecutive samples of the i-th node Hopfield ANN output
signal.

Case 2: Slowly Time Varying Communication Channel.
We evaluated the DFE structure using two slow time-varying communication chan-

nels. In the first one, we used the «snapshot» method [46], in which we assumed that
the channel remains constant over 100 data symbols. Here, the impulse response of an
equivalent communication channel is given by equations (14.18)–(14.21) with M1 = 120
andM2 = 200 and k given by the integer part of Sr/100, where Sr is the symbol number.
The simulation result is shown in Fig. 14.16, where the forgetting factor used for the
RLS algorithm is equal to 0.99. Figure 14.17 shows the performance of the proposed
DFE and conventional DFE structure using the RLS algorithm when both are required
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Fig. 14.15. Bit error rate obtained by using the proposed and conventional DFE structures when
both are required to equalize the three communication channels described above.

Fig. 14.16. Bit error rate obtained by using the proposed and conventional DFE structures when
both are required to equalize a slowly time-varying communication channel. The snapshot method

was used.

to equalize a continuously slow time-varying communication channel, whose equivalent
channel is given by the equations (14.18)–(14.21) with M1 = 1200 and M2 = 2000, and
k is the symbol number. A forgetting factor equal to 0.99 was used in the RLS algorithm.
Figure 14.18 shows the trace of the theoretical and estimated coefficients when using
the proposed structure in a slow time-varying environment, and Fig. 14.19 shows the
coefficients trace when the conventional RLS algorithm is used. These figures show that
the analog DFE structure outperforms the conventional DFE with RLS algorithm when
the communication channel varies slowly in time.
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Fig. 14.17. Bit error rate obtained by using the proposed and conventional DFE structures when
both are required to equalize slowly time-varying communication channels.

Fig. 14.18. Trace of the first A’[0] and second A’[1] coefficients of proposed DFE structure when
it is required to equalize a slowly time varying communication channel. The theoretical values

A[0] and A[1] are also shown.

Case 3: Rapidly Time Varying Channel.
We evaluated the convergence performance of analog DFE structure and compared it

with the performance of a conventional DFE structure when both are required to equalize
rapidly time-varying communication channels, often found in mobile communication
systems. The channel impulse response varies according to equations (14.18)–(14.21)
in the symbol rate. It is assumed that ρ = 3 dB, which can be considered as a standard
situation in several large cities, such as Mexico City. The sampling rate of the conven-
tional DFE structure input signal was assumed to be equal to the symbol rate, while in
the proposed DFE structure the sampling rate was assumed to be 10 times faster than
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Fig. 14.19. Trace of the first A’[0] and second A’[1] coefficients of conventional DFE structure
when it is required to equalize a slowly time-varying communication channel. A[0] and A[1] are

the theoretical values.

Fig. 14.20. Bit error rate obtained by using the proposed and conventional DFE structures when
both are required to equalize a rapidly time-varying communication channel.

the symbol rate. In both cases, the communication channel varies with each sampling
period of a different variation rate, such that at the end of each symbol period both
reach the same value. Figure 14.20 shows the bit error rate (BER) of the analog DFE
structure along with the BER provided by the conventional DFE structure with the RLS
algorithm. The forgetting factor of the RLS algorithm is equal to 0.9, which is the best
value according to the simulations shown in Fig. 14.21. Figures 14.22 and 14.23 show
the coefficient traces of theoretical and estimated coefficients obtained using the analog
and conventional algorithms operating in a rapid time-varying environment. Figures
14.20, 14.22, and 14.23 show that the analog structure outperforms, significantly, the
performance of conventional discrete time DFE structure with RLS adaptation algorithm.
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Fig. 14.21. Bit error rate obtained by using the conventional DFE structures with different
forgetting factors when it is required to equalize a rapidly time-varying communication channel.

Fig. 14.22. Trace of the first A’[0] and second A’[1] coefficients of proposed DFE structure when
it is required to equalize a rapidly time-varying communication channel. The theoretical values

A[0] and A[1] are also shown.

14.5. Fuzzy Equalizer Structure

The equalizer structures described in Sections 14.3 and 14.4 assume that the
communication channels are linear and then intended to compensate those linear
distortions. However, although these structures are very efficient to handle linear
distortion, their performance degrades when the distortions are due to nonlinearities of
the communications channels. A suitable choice to handle these kinds of distortions is
the standard additive model (SAM) fuzzy logic based equalizers. A standard additive
model (SAM) system F is a set of rules of the form «If X = Aj then Y = Bj», that maps
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Fig. 14.23. Trace of the first A’[0] and second A’[1] coefficients of conventional DFE structure
when it is required to equalize a rapidly time-varying communication channel. The theoretical

values A[0] and A[1] are also shown.

Fig. 14.24. SAM Model.

the inputs to outputs, such that the fuzzy system F can approach any arbitrary function
f by covering its graph with rule patches and averaging the patches that overlap among
them [49], as shown in Fig. 14.24, whose output is defined as

F (x) =

m∑

j=1

wjaj(x)Vjcj

m∑

j=1

wjaj(x)Vj

, (14.24)

where wj is the adaptive weight, aj is the if-part of the «fuzzy» or multivalued set Aj ,
Vj is the volume or the area of then-part set and Cj is the centroid of then-part set. All
of these parameters can be adapted using a gradient algorithm as follows [49]:

wj(n+ 1) = wj(n) + µ
pj(x)

wj(n)
(d(n) − F (x)) (Cj − F (x)) , (14.25)

Vj(n+ 1) = Vj(n) + µ
pj(x)

Vj(n)
(d(n) − F (x)) (Cj − F (x)) , (14.26)

Cj(n+ 1) = Cj(n) + µ (d(n) − F (x)) pj(x). (14.27)
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14.5.1. SAM based Equalizer Structure. The fuzzy equalizer algorithm is a mod-
ification of the SAM model applied to the channel equalization. From the SAM theory,
if the modes or «peaks» of the then-parts sets are equal to the centroids of the then-part
sets and if then-part sets have all the same areas or volumes and the same weights, then
the SAM fuzzy system reduces to the center of gravity of the COG fuzzy model [49].

F (x) =

m∑

j=1

aj(x)Pj

m∑

j=1

aj(x)

. (14.28)

The radial basis function networks or RBFs neuronal network theory is a special case of
the SAM. This model is given for the COG model and the radial basis function (RBF)
model of neuronal networks, under the following considerations:

y = z,

aj(x) =
n∏

i=1

aji (xi) =
n∏

i=1

µAj
i
(xi),

Vj = 1,

Cj = zj ,

it follows that

F (x) =

m∑

j=1

zj

(
n∏

i=1

µ
Aj

i
(xi)

)

m∑

j=1

n∏

i=1

µ
Aj

i
(xi)

, (14.29)

where zj is the point in R where the membership function achieves its maximum value
and µjA is a Gaussian membership function

µAj
i
(xi) = exp

[
−1

2

(
xi − xj

i

σj
i

)2
]
, (14.30)

where xji is the mean of the membership function, σji is its variance. Here, the
parameters of the system can be adapted using a gradient algorithm [49]:

zj(n+ 1) = zj(n) + α (d(n) − F (x)) pj(x), (14.31)

xji (n+ 1) = xji (n) + α (d(n) − F (x))
(
zj − F (x)

)
pj(x)

(
xi − xj

i

σj
i

2

)
, (14.32)

σji (n+ 1) = σji (n) + α (d(n) − F (x))
(
zj − F (x)

)
pj(x)

((
xi − xj

i

)2

σj
i

3

)
. (14.33)

14.5.2. Performance Evaluation. When the transmitted signal passes through of
a nonlinear channel, the received signal is a nonlinear function from the last values
of the transmitted symbols. The generated nonlinear distortion varies with time and
place. A comparison is shown between the performance of the fuzzy algorithm and the
traversal equalizer with the LMS and RLS algorithms, using a nonlinear channel [51],
given by

x(n) = z(n) + 0.5z(n− 1) − 0.9[z(n) + 0.5z(n− 1)]3 . (14.34)
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Fig. 14.25. Bit error rate obtained using the fuzzy and transversal equalizers.

Fig. 14.26. Bit error rate obtained using the fuzzy and conventional DFE equalizers.
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For the fuzzy equalizer, 25 rules were used with a sigma equal to 0.2 for all them and
α = 0.01. The transversal equalizer with the LMS and RLS adaptation algorithms have
the same numbers of delays and the same convergence factors, α = 0.01. The obtained
bit error rate (BER) is shown in Fig. 14.26. From these results we can see that the
fuzzy equalizer performs better than the transversal equalizer using either the RLS or
LMS algorithms. The total number of samples used to obtain the results mentioned
above is 20000, with 3000 samples only considered for training.

14.6. Blind Equalizer Structure

This section describes a blind detector to operate in an asynchronous DS CDMA
spatial temporal array communication system subject to a frequency selective channel,
which is based on the work by Sadler and Manikas [50].

Fig. 14.27. Block diagram of DS CDMA Transmitter system.

14.6.1. Transmitter. Consider the block diagram of a particular mobile transmitter
shown in Fig. 14.27. At point A, the ith user produces a sequence of complex channel
symbols according to the M−ary modulation scheme to be employed, where M is the
number of points in the signal constellation. The channel symbols are denoted by bi(n),
which have a rate of rcs = rb = log 2 (M) symbols per second. In this paper, quaternary
phase shift keying (QPSK) is considered, where each symbol being transmitted has unit
energy. The channel symbol sequence is then transformed into an impulse train at point
B given by

bi(t) =
∞∑

n=−∞

bi(n)δ (t− nTcs), nTcs 6 t < (n+ 1)Tcs, (14.35)

where Tcs = 1/rcs is the channel symbol period and δ(t) is the delta-function. Convolving
this signal with one period of a pseudo-noise (PN) signal, cPN.i, spreads the signal over
a wider bandwidth, producing a baseband DS-CDMA signal at point C given by

mi(t) =
∞∑

n=−∞

bi(n)cPN ,i (t− nTcs). (14.36)
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where cPN.i is a single period of the PN-signal for the ith user modeled by

CPN ,i(t) =
Nc−1∑

m=0

αi(m)pc(t−mTc), mTcs 6 t 6 (m+ 1)Tcs, (14.37)

αi(m) is the ith user’s PN-sequence of length Nc, and pc(t) is a rectangular chip pulse
waveform of duration Tc. Note that a short code system is being used, so the number of
chips per symbol is equal to the length of the PN-sequence. The DS-CDMA signal now
modulates N subcarriers, which are summed to produce the signal at point D. It is then
up converted to the carrier frequency to produce the transmitted radio frequency signal
at point E:

yi(t) =
N−1∑

k=0

√
Pi exp (j (2πFct+ ςi)) exp (j2πFkt)mi(t), (14.38)

in which Pi is the transmitted power, Fc is the carrier frequency, and ςi is a random
phase offset relative to the base station receiver.

14.6.2. Channel Model. The radio channel is assumed to be fading and multipath
dispersive so that the array complex baseband channel impulse response for the kth
subcarrier, jth path of the ith user is given by

cijk(t) = βijkSijkδ (t− τij) , (14.39)

where βijk is the complex path coefficient that encompasses random phase, shifts, and
fading effects. The value τij is the path delay, which will be the same for all subcarriers
for a particular path. The vector Sijk is the array manifold vector at a frequency of
Fc + Fk for a specific path. In general, the parameters βijk, τij , and Sijk can be assumed
to be independent of time for symbols transmitted during the channel coherence time.
For this case, the channel is assumed to be quasi-stationary.

14.6.3. Array Receiver Front Model. At the base station the superimposed radio
signals for all users, paths, and subcarriers are received through an antenna array.
We consider M mobile stations with Ki paths for the ith user. After the carriers are
removed, the N × 1 complex received signal vector at point F of Fig. 14.28 is given by

x(t) =
M∑

i=1

Ki∑

j=0

Nsc−1∑

k=0

βijkSijk × exp (j2πFk (t− τij))mi (t− τij) + n(t). (14.40)

Once this signal is discretized through a bank of samplers operating at a rate of 1/Ts,
where Ts = Tc/qNsc and q ∈ N is the oversampling factor, the samples are passed
through N -tapped delay lines of length 2L. A long vector Xi(n) is formed at point G
by concatenating the contents of the tapped delay lines of all antennas and reading the
entries by every symbol period:

Xi(n) = [X1(n) , X2(n) . . . XN(n)]T. (14.41)

This multi-user space–time received signal vector contains the signals associated with
the nth instant symbol. Furthermore, contributions from the previous and next data
symbols are present due to the lack of synchronization. This vector considers the
contributions from all subcarriers, and its derivation is explained in [50].

14.6.4. Blind Multiuser Detector. A blind adaptive multiuser detector can be
implemented by introducing a bank of equalizers followed by quantizers. Proper equalizer
design usually requires the knowledge (or estimation) of the channel characteristics.
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Fig. 14.28. Block diagram of blind detection structure.

Some adaptive methods, such as the least means square (LMS), require a bandwidth
consuming training sequence (see [63]). Blind equalization [64], on the other hand,
allows adaptation to the ISI reducing equalizer settings without the need for such training
sequences or channel estimates. In this sense, the equalizer output for the ith user can
be expressed as

di(n) =
i∑

l=1

wilxl(n) = WT
i (n)X(n), i = 1, 2, . . .K, (14.42)

where Wi(n) and X(n) represent the equalizer coefficients and input signal vectors,
respectively. The CMA [56] is a popular blind adaptation method, which penalizes the
deviation of the modulus of equalizer output from some given constant. Assuming an
antipodal binary value ±1, the CMA cost function may be written as

J (di(n)) =
1

4
E
[(
d2i (n) − 1

)2]
, i = 1, 2, . . .K. (14.43)

The coefficients vectors Wi(n) are updated using the gradient of J with respect to the
coefficients vector Wi. Thus, under the assumption that Wi(n+ 1) at the nth instant
is known, Wi(n+ 1) can be updated recursively as follows:

Wi(n+ 1) = Wi(n) − µ
∂J (di(n))

∂Wi(n)
, i = 1, 2, . . .K, (14.44)

where µg is the step size, which controls the stability and convergence rate. Taking the
derivative of J (di(n)) with respect to Wi and dropping the expectation operation, we
obtain

Wi(n+ 1) = Wi(n) − µX(n)di(n)
(
d2i (n) − 1

)
, i = 1, 2, . . .K. (14.45)

As follows from (14.44), only the signal X(n) contains the desired information bi(n)
of ith user. Thus, the minimization of the cost function (14.43) naturally results in an
optimal solution for the ith user only if the main tap coefficient wii is not equal to zero.
After convergence of the blind equalizer coefficients vector, the decision for the ith user
at the nth time instant can be made by taking the sign of di(n):

b̂i(n) = sgn (di(n)) . (14.46)

The decision feedback introduces a nonlinear process, which has the potential of
improving performance beyond the constraints imposed by linear detectors. However,
such detectors are susceptible to error propagation in case of erroneous decisions. It is
therefore important to detect users according to the received amplitude. We can extent
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a blind CMA detector to include decision feedback modifying the above algorithm as
follows.

Based on the noise-whitened statistics, we can assume that user 1 can be detected
directly using equation (14.44) as follows:

b̂1(n) = sgn (d1(n)) . (14.47)

For user 2, since the decision for user 1 has been done, the equalization for user 2 can
be realized by feeding back the decision b̂1 as follows:

d2(n) = W2,iXi(n) + w2,1b̂1(n). (14.48)

The decision for user 2 can be obtained as

b̂2(n) = sgn (di(n)) = sgn (d2(n)) . (14.49)

Similarly, for the ith user, the equalizer output can be expressed as

di(n) = Wi,iXi(n) + wi,i−1b̂i−1(n) + wi,i−1b̂i−1(n) + · · · + wi,1b̂1(n), (14.50)

di(n) = WT
i (n)X̂i(n), i = 2, 3, . . . ,M , (14.51)

where

X̂i(n) =
[
X(n), b̂i−1(n) b̂i−i(n) . . . b̂1(n)

]T
(14.52)

and
Wi(n) = [Wi,i,wi,i−1,wi,i−2,. . . . ,wi,1]

T
(14.53)

are the input and coefficients equalizer vectors at time instant n. Thus, from equa-
tion (14.50) the decision for the ith user can be made by

b̂i(n) = sgn (di(n)) , i = 1, 2, . . . , M. (14.54)

Finally, substituting (14.50) into (14.10)–(14.12), we obtain the decision feedback blind
equalization algorithm whose coefficients vector is updated as follows:

Wi(n+ 1) = Wi(n) − µX̂i(n)di(n)
(
d2i (n) − 1

)
. (14.55)

Combining (14.45)–(14.50), we obtain the decision-feedback blind adaptive multiuser
detector. The principal problem with this method is the slow convergence rate de-
rived from its gradient-based structure. Moreover, in practical implementations, the
order for equalizer filters can be extremely long. This leads serious degradation in
the performance, which can make difficult its implementation under real conditions.
Although (14.55) seems easy to implement, it have limitations that have motivated us
to investigate a method to improve its convergence rate. Since this is a gradient based
algorithm, one limitation concerns the sensitivity of convergence to the statistics of the
input signal. An examination of this limitation in the nonblind case and the methods
that have been devised to deal with it provide background material for the adaptive
algorithm developed in next section. One alternative to solve this problem is to use an
orthogonalized adaptive filtering approach to improve the performance of blind multiuser
detector. The next section provides the derivation of the proposed orthogonalized blind
detector.

14.6.5. Parallel Realization Form. Consider the output signal y(n) of an Nth-
order transversal filter, which is given by

di(n) = XT
F (n)Hi, (14.56)
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where

XF (n) =
[
XT(n),XT(n − M),XT(n − 2M), . . . ,

. . . ,XT (n− (L− 2)M),XT (n− (L− 1)M)
]T

, (14.57)

X(n− kM) = [x(n− kM),x(n− kM − 1), . . . ,x(n− (k + 1)M + 1)]T (14.58)

is the input vector,
Hi =

[
HT

0 ,H
T
1 ,H

T
2 , . . . ,H

T
L−1

]T
(14.59)

is the overall equalizer coefficients vector, and

Hk =
[
hkM ,hkM+1,hkM+2, . . . ,h(k+1)M−1

]T
(14.60)

is the kth sparse filter coefficients vector. Next, substituting equations (14.57)
and (14.59) into equation (14.56), we obtain

di(n) =
L−1∑

k=0

XT (n− kL)Hk. (14.61)

Next, define
Hk = CTAk, (14.62)

where C denotes the discrete cosine transform (DCT). Substituting equation (14.62) into
equation (14.61), we obtain

di(n) =
L−1∑

k=0

(CX(n − kM))T Ak =
L−1∑

k=0

UT (n− kM)Ak, (14.63)

where UT (n− kM) = (CX(n− kM))T is the DCT of the input vector X(n),

U(n− kM) = [u0(n− kM),u1(n− kM), . . . ,

. . . ,u3(n− kM), . . . ,uM−1(n− kM)]T , (14.64)

Ak =
[
ak,1, ak,2,, . . . , ak,(M−1)

]T
. (14.65)

Then, from equations (14.63) and (14.65) we obtain

di(n) =
L−1∑

k=0

M−1∑

r=0

ak,rur(n− kM). (14.66)

In order to improve the system performance, firstly interchange the summation order as
follows:

di(n) =
M−1∑

r=0

L−1∑

k=0

ak,rur(n− kM) (14.67)

and define

Vr(n) = [ur(n),ur(n−M),ur(n− 2M), . . . ,

. . . ,ur(n− (L− 2)M),ur(n− (L− 1)M)]T , (14.68)

Wr =
[
a0,r, a1,r, a2,r, . . . , a(L−1),r

]T
, (14.69)
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so that equation (14.67) takes the form

di(n) =
M−1∑

r=0

WT
r Vr(n). (14.70)

Expression (14.70) defines the output signal of the subband decomposition based filter
structure proposed in [64], which also has perfect reconstruction properties without
regarding the statistics of the input signal or the adaptive filter order.

Fig. 14.29. Subband decomposition based blind detection structure.

14.6.6. Adaptation algorithm. The blind equalizer coefficients vector is updated
so that the cost function given by equation (14.43) attains a minimum. Substituting
equation (14.70) into (14.55) and dropping the expectation operator, we obtain

Wr,i(n+ 1) = Wr,i(n) − µVr,i(n)di(n)
(
d2i (n) − 1

)
, (14.71)

where di(n) is the detected symbol,

Vr,i(n) = [ur,i(n),ur,i(n−M),ur,i(n− 2M), . . . ,

. . . ,ur,i(n− (L− 2)M),ur,i(n− (L− 1)M)]T (14.72)

is the rth filter input vector corresponding to the ith user, and ur,i(n) is the rth DCT
component of the input vector of the ith user which, from equation (14.51) is given by

X̂i(n) =
[
X(n) b̂i−1(n) b̂i−i(n) . . . b̂1(n)

]
, (14.73)

where b̂i(n) is the ith user detected symbol, given by equation (14.51). Figure 14.28
shows the block diagram of the proposed blind detector corresponding to the ith user.

14.6.7. Simulation results. This section provides some computer simulation re-
sults obtained to evaluate the actual convergence and detection performance of the
parallel blind detection algorithm described above. In order to illustrate the performance
of the proposed method and compare it with the convergence performance of the



346 Ch. 14. Adaptive Equalizers

Fig. 14.30. The rth stage of blind subband decomposition in the proposed blind detector.

Fig. 14.31. Blind DFE based on subband decomposition approach.

conventional algorithm, we consider two different scenarios. First, the conventional blind
adaptive multiuser detector (BMUD) is evaluated using an asynchronous DS-CDMA
system; and next the subband decomposition based scheme (DCT-MUD) is evaluated
under the same conditions to compare the performance of both cases. Two important
evaluation parameters of both detectors are calculated in our analysis: the convergence
performance or the mean-square error (MSE) and the bit error rate (BER). The results
for these parameters are obtained for 5, 10, and 15 users in the DS-CDMA system, which
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Fig. 14.32. Convergence performances of the BMUD and DCT-MUD for the 5th user. The
SNR = 10 dB, step size is 0.001, and all user energies are identical.

Fig. 14.33. Convergence performance of BMUD and DCT-MUD for the 10th user. The SNR =
= 10 dB, step size is 0.001, and all user energies are identical.

are shown in Figs 14.32–14.37. The convergence performance of the BMUD and the
DCT-MUD for the fifth-user case, assuming that the energies of all users are identical,
is shown in Fig. 14.32. In this case, the signal-to-noise ratio (SNR) is 10 dB and the
step size of the blind equalizers is µ = 0.01. The same evaluation results are shown for
the 10th user and 15th user in Figs. 14.33 and 14.34, respectively. From these figures,
we can see that the DCT-MUD achieves faster convergence performance in comparison
to the BMUD. This reason is that the DCT-MUD carries out the adaptation process
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Fig. 14.34. Convergence performance of the BMUD and DCT-MUD for 15th user. The SNR =
= 10 dB, step size is 0.001. and all user energies are identical.

Fig. 14.35. Bit error performance of the BMUD and DCT-MUD for the 5th user.

over signal with improved characteristics derived from the use of a DCT based subband
decomposition. The subband decomposition performs two important operations: firstly,
it approximately decorrelate the input signal and, secondly, decompose the full-band
equalizer into a bank of sparse equalizers with a reduced number of taps, allowing
an easy parallel realization form. These two facts make it possible to increase the
convergence rate of the gradient-search-based adaptive algorithm used to update the
blind detector coefficients vector.
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Fig. 14.36. Bit error performance of the BMUD and DCT-MUD for the 10th user.

Fig. 14.37. Bit error performance of the BMUD and DCT-MUD for the 15th user.

Figures 14.35–14.37 show the bit error rate performance of DCT-MUD and the
BMUD when they are required to detect the 5th, 10th, and 15th users, respectively,
operating in a DS-CDMA system. In all cases, all users have identical energies.
For comparison, both the BMUD and the DCT-MUD were simulated under the same
conditions. The simulation results have shown that, although the performance for
both detectors must be the same for the case of user 1, according to (14.47), as
the user number increases, the presence of multiple access interference (MAI) is also
more severe. This fact introduces a larger error rate which degrades the equalizer
performance. However, in all cases the proposed equalizer provides a better performance
than the conventional one. Simulation results have shown that the performance of blind
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detection method is similar to that of the conventional algorithm with respect to the
BER. However, the algorithm with subband decomposition provides better convergence
rates, offering the same estimation error as compared with the conventional detector.

Conclusions

This chapter presents several approaches to reduce the intersymbol interference in
data communication systems. Firstly, the problem of simultaneous reduction of the
intersymbol and transmitter signal interferences is analyzed. Here, three different
approaches are analyzed: the ISI-DFE, the NP-DFE, and the H-DFE. The computer
simulation has shown that both the NP-DFE and H-DFE structures provide a little
better performance than the conventional ISI-DFE under distortion conditions of ISI
and for a colored signal such as a voice signal at the receiver generated for its own
transmitter, due to fact that the NP-DFE structure does not propagate an erroneously
detected symbol, as it happens with the ISI-DFE structure, while the ISI-DFE performs
better when the additive noise is white. The H-DFE is a structure that combines
the characteristics of the DFE-ISI and DFE-NP (ISI reduction and noise reduction).
According to the results, it is better to adapt simultaneously the echo canceller and the
equalizer.

A Hopfield ANN-based continuous time decision feedback equalizer structure is
presented for equalization of time varying land mobile communications channels, in
which the DFE output signal is computed in a analog discrete time way, and a continuous
time Hopfield neural network is used to update the DFE structure coefficients vector.
Thus, the DFE output and the coefficients vector update can be computed in less time
and with less power than it is required by its digital counterparts. The performance
of the proposed DFE structure was evaluated and compared with that of the conven-
tional DFE with a RLS adaptation algorithm by computer simulations assuming three
different cases: time invariant (stationary) communication channels, slow time-varying
communication channels, and rapid time-varying communication channel. In all the
cases, a 4-QAM modulation scheme was assumed. These results show that both the
proposed and the conventional DFE perform quite similarly when it is required to
equalize stationary communication channels. However, the proposed DFE structure
outperforms the conventional DFE structure when it is required to equalize time-varying
communication channels. The reason is that the proposed scheme is updated more
frequently. Thus, potentially, it has a much faster convergence rate and a greater
ability to track rapidly changing channels as well as a smaller size and lower power
consumption.

A fuzzy equalizer is also presented. Computer simulations show that the neurofuzzy
algorithm provides a much better performance than conventional transversal equalizers
with LMS and RLS equalizers applied in nonlinear channels equalization problems. The
neurofuzzy DFE algorithm shows also an improvement with respect to its equivalent
DFE with RLS adaptation algorithm (nonlinear technique of equalization). In both cases,
it is achieved by increasing the number of membership functions, although it will also
increase its computational complexity. It may be their main disadvantage when limited
computational power is available.

This chapter presented a blind decision-feedback structure based on a subband
decomposition, in which, firstly, the DCT is used to approximately orthogonalize the
input vector, which is subsequently inserted in a bank of parallel sparse FIR whose
coefficients are updated using the CMA algorithm. This equalizer structure is based
on a previously proposed blind multicarrier CDMA receiver, whose bit error rate is
reduced introducing the detected bits of previous users. This approach does not require
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a previous knowledge about the system. Simulation results show that the orthogonalized
blind structure has better convergence performance than the conventional blind equalizer.
The performance of both equalizers is improved with the introduction of a feedback
stage; however, the computational complexity becomes higher when the number of users
increases, because, in this situation, the size of the input and coefficients vector also
increases in both the parallel and conventional equalizers. Simulation results show that
the parallel equalizer provides higher convergence rates and better performance than
conventional method.
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